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It has been studied whether machine learning interatomic potentials parameterized with only disordered con-
figurations corresponding to liquid can describe the properties of crystalline phases and predict their struc-
ture. The study has been performed for a network-forming system SiO2, which has numerous polymorphic
phases significantly different in structure and density. Using only high-temperature disordered configura-
tions, a machine learning interatomic potential based on artificial neural networks (DeePMD model) has
been parameterized. The potential reproduces well ab initio dependences of the energy on the volume and the
vibrational density of states for all considered tetra- and octahedral crystalline phases of SiO2. Furthermore,
the combination of the evolutionary algorithm and the developed DeePMD potential has made it possible to
reproduce the really observed crystalline structures of SiO2. Such a good liquid–crystal portability of the
machine learning interatomic potential opens prospects for the simulation of the structure and properties of
new systems for which experimental information on crystalline phases is absent.
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INTRODUCTION

The application of machine learning methods to
construct classical interatomic potentials in recent
years has provided significant progress in the atomistic
simulation of materials [1–3]. The main idea of such
an approach is to approximate the potential energy
surface of a system by some general many-body func-
tion (e.g., a multilayer neural network) using reference
values of the energies and interparticle forces obtained
in ab initio calculations. This idea is similar to the
force-matching method proposed in [4], which was
successfully used to parameterize model potentials
such as an embedded-atom potential [5–7]. The fun-
damental difference of machine learning interatomic
potentials (MLIPs) is the use of much more complex
many-body functions sometimes having hundreds of
thousands of tunable parameters, which allows one to
reach an accuracy comparable with the accuracy of ab
initio methods using orders of magnitude less compu-
tational resources.

Although this approach is attractive, many import-
ant items concerning the construction of MLIPs and
their application to solve particular problems are
unsolved. The key problem is the development of

effective methods of the formation of a training dataset
(TD), i.e., a set of representative atomic configura-
tions and the corresponding energies and forces used
to parameterize MLIPs. In most cases, TD is based on
ordered configurations corresponding to various crys-
talline phases of the system under study; disordered
(liquid, amorphous) configurations are used only as
supplements to crystalline configurations or in the
case where the aim is to study the corresponding dis-
ordered phases [3]. Natural questions arise: What are
the crystalline configurations that should be consid-
ered to parameterize potentials and what is an algo-
rithm for their generation? One of the possible variants
is to use crystallographic databases or repositories of
computational projects such as Materials Project,
OQMD, and AiiDA. Configurations from such data-
bases form a basic TD, which is then expanded by
introducing structural defects and/or in the process of
molecular dynamics simulations [8]. The main prob-
lem of this approach is the necessity of a priori knowl-
edge or at least some assumptions on crystalline struc-
tures that can appear in the studied system. However,
this information for many (particularly multicompo-
nent) systems can be very limited or unavailable
altogether. In these cases, methods that do not involve
370



LIQUID–CRYSTAL STRUCTURE 371
a priori information on crystalline structures are nec-
essary for the construction of representative TDs.

One of the methods to solve this problem is the
parameterization of MLIPs with the use of only disor-
dered configurations corresponding to liquid. Since
atoms in liquid are fairly mobile, the molecular
dynamics simulation of liquids at various densities,
temperatures, and pressures allows one to quite rapidly
form the representative TD and to parameterize an
MLIP that makes it possible to simulate the properties
of melts with a high accuracy [9, 10]. How will the
MLIP parameterized only with disordered liquid con-
figuration describe the properties of crystalline
phases?

This problem is still poorly studied; only a few
examples of such an approach are reported. In partic-
ular, the MLIP parameterized with primarily disor-
dered configurations was recently proposed for the
simulation of rubidium [11]. It was shown that this
potential reproduces a maximum on the pressure
dependence of the melting temperature of the bcc
phase of rubidium. However, rubidium is a quite sim-
ple alkali metal with a predominantly isotropic inter-
atomic interaction. In addition, the authors of [11]
used a small number of crystalline configurations for
the parameterization. Will such a machine learning
procedure be efficient for the description of more
complex multicomponent systems with an anisotropic
interaction? This question was partially answered in
[12], where the MLIP parameterized on liquid water
configurations was used to calculate the density, ener-
gies, and vibrational spectra of various ice phases in
comparison with ab initio calculations. However, the
accuracy of the reproduction of the energies of crystal-
line structures in [12] was low. Indeed, the correlation
between the MLIP and ab initio results for the energies
systematically deviates from the diagonal by about the
standard deviation (cf. Fig. 4 in this work). A similar
deviation was also observed in [13], where the MLIP
parameterized on liquid configurations was used to
seek stable crystalline structures with the evolutionary
algorithm. This is a serious drawback because system-
atic errors in the description of the energies of crystals
are unallowable when the MLIP is used to predict
their structure.

A fundamental question arises: Can a self-consis-
tent method of constructing MLIPs that does not
require a priori information on crystalline structures
be developed to describe both disordered and ordered
phases with a high accuracy and to predict their struc-
ture? A universal answer to this question is obviously
absent and an answer will be different for systems of
different natures, different machine learning models,
and different methods of the formation of the TD. In
this work, we analyze this problem for network-form-
ing systems considering SiO2 as a representative of
these systems. This is a rather complex system with
numerous polymorphic phases significantly different
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in structure and density. The construction of MLIPs
for SiO2 that reproduce well the known experimental
and calculated properties of both crystalline and disor-
dered phases was reported in [10, 14, 15]. However,
crystals were simulated in all cases with potentials
parameterized using the corresponding crystalline
configurations. The problems of liquid–crystal trans-
ferability in the construction of MLIPs and, in partic-
ular, the possibility of prediction of the structure of
crystalline phases using information on the local
structure of liquid were not considered in the cited
works.

The discussed problems are not only important for
computational materials science but are also of funda-
mental interest for the physics of disordered systems.
Indeed, it is very interesting and poorly studied
whether the local structure of liquids carries informa-
tion on the structure of crystals and to what extent it
can be used for the calculation and prediction of their
properties. Recent studies of this problem [16–19]
show that the analysis of the properties of a melt some-
times allows important (even predictive) conclusions
on the structure and properties of solid phases. The
genetic relation between the structures of liquid and
crystal is called below structure inheritance.

DEVELOPMENT OF THE POTENTIAL
The key stages of the development of any MLIP are

(i) the choice of a method for the transformation of the
coordinates of the local environment of atoms to a set
of so-called descriptors, i.e., numbers invariant under
translations, rotations, and permutations, and (ii) the
choice of a regression model used to approximate the
potential energy surface. Experience shows that the
choice of descriptors is more significant for the accu-
racy and efficiency of the model than the choice of the
regression model [9]. In this work, we use the
DeePMD model [20] involving two coupled artificial
neural networks (ANNs): an embedded network for
the transformation of the local environment of atoms
to descriptors and an approximating network for the
transformation of the descriptors of all atoms of
the system to the potential energy. The architecture of
both ANNs is chosen in the form of a multilayer fully
connected forward propagation neural network
(so-called perceptron). The complete mathematical
description of the model is rather lengthy and is given
in [2]. Here, we briefly describe only the main ideas.

The local environment of the ith atom is described
by the matrix , which includes the coordi-
nates of  nearest neighbors in a sphere with the
radius rcut, which are specified in a local coordinate

system. This matrix is transformed into  as
, where  is a certain continu-

ously differentiable function monotonically vanishing
at r → rcut. A set of descriptors for the environment of
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the ith atom is formed as ,

where  is the vector with the length M returned by
the embedded ANN to the input layer of which the
vectors  are supplied, and  is the vector con-
sisting of the first  components of the vector

. It can be shown that the descriptors  ensure
invariance under translations, rotations, and permuta-
tions. It is important that these descriptors are adap-
tive because the weights of the embedded ANN are
also modified during the parameterization. The use of
such descriptors requires minimum human control;
only the architecture of the embedded ANN should be
specified. Because of a large number of parameters
compared to other descriptors, ANN descriptors are
quite f lexible to describe different phases of a material
in wide temperature and pressure ranges.

The method of formation of the TD is of key
importance for the parameterization of MLIPs. One
of the standard methods is to build the TD from con-
figurations obtained in an ab initio molecular dynam-
ics simulation. This approach can give unsatisfactory
results because the length of molecular dynamics tra-
jectories is usually no longer than several picoseconds.
Configurations thus generated are strongly correlated
because the system at simulation times can be con-
fined in the configuration space region corresponding
to a certain local minimum of the potential energy
(this problem likely arose in [13]). To solve this prob-
lem, various active learning algorithms are used to
efficiently select configurations in a wide configura-
tion space region [2, 21].

In this work, to form the TD, we used one of the
active learning algorithms implemented in the DP-
GEN software [22]. The algorithm is based on the
iterative repetition of three stages: training, explora-
tion, and labeling. In the training stage, 
DeePMD potentials with the same architecture of the
ANN but with different random distributions of the
initial parameters are parameterized on the existing
TD. These potentials are used to perform the classical
molecular dynamics simulation at different tempera-
tures T, pressures P, and densities (exploration stage).
The use of the classical molecular dynamics simula-
tion allows one to start tens of parallel calculations
with different thermodynamic parameters, to consider
trajectories with a length of hundreds of picoseconds,
and thereby to effectively cover wide configuration
space regions. For each trajectory, the accuracy of the
potential is controlled, as well as configurations on
which the model gives a low accuracy. To this end, the
following quantity is estimated for configurations 
appearing in this trajectory in the tth step:
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where  is the force acting on the ith atom in the
DeePMD model with the parameters w in the config-
uration  and averaging is performed over an ensem-
ble of models. Configurations for which the inequali-
ties  are valid are selected as candidates for
the supplement of the TD. Then, ab initio calculations
of the energies, interatomic forces, and stress tensors
are carried out for a certain given number of configu-
rations from the list of candidates (labeling stage). The
described procedure is repeated until the saturation of
the TD; i.e., new configurations are no longer selected
in the exploration stage. This algorithm allows the for-
mation of a compact representative TD including sta-
tistically independent configurations.

In this work, the classical molecular dynamics sim-
ulation with the MLIP was performed using the
LAMMPS [23], and the ab initio DFT calculations
were carried out with the VASP [24]. Supercells con-
sisting of 342 particles (114 SiO2 structural units) were
considered for the parameterization.

Important parameters of the DeePMD model are
the cutoff radius , the smoothing radius , the
architecture of the embedded ANN, the architecture
of the approximating ANN, the initial learning rate

, the final learning rate , the initial (final)

weight of energies (forces, virials) , the num-
ber of learning epochs , and the learning batch
size .

In addition to the parameters listed above, the
parameters of ab initio calculations affect the ANN
potential. The most important parameters in our case
are the type of approximation used for the exchange
correlation energy, the type of pseudopotentials, the
cutoff energy of the plane wave basis , the method
of smoothing of the electron density of states
(ISMEAR), the smoothing parameter σ, and the grid
in the k space. The calculations in the VASP were per-
formed with the PAW–PBE pseudopotentials [25].

Table 1 summarizes all key parameters of the active
learning algorithm, DeePMD model, and ab initio
calculations. These parameters were used to develop
two potentials; one of them (LP-DeePMD) was
parameterized only on melt configurations corre-
sponding to trajectories at zero pressure, whereas the
second potential (HP-DeePMD) was parameterized
with the inclusion of high pressures up to 70 GPa.

TEST OF THE POTENTIAL
Figures 1a and 1b show correlations between the

DFT and HP-DeePMD results for the energies and
force components, respectively, calculated for the
same configurations. It is seen that the DeePMD
potential reproduces quite well the ab initio energies
and forces for configurations corresponding to the liq-
uid state. Experience shows that such an accuracy
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Table 1. Parameters of the DeePMD potential and the
VASP used to parameterize the potentials

Parameter Value Parameter Value

T, 103 K 3.0–4.5 p, GPa 0–70

 eV/Å 0.15  eV/Å 0.30

, Å 7 , Å 4
Embedded ANN [50 100] Atomic ANN [250 250 250]

10–3 10–5

4 5

500 5

106 1

, eV 520 k-grid Г point
ISMEAR 0 σ 0.05

,lε ,hε

cutr smthr

startl stopl

modelsN ep

fp
v

p

epochN batchN

cutE
ensures good reproducibility of the structure and
dynamic properties of melts [9, 10].

To analyze the transformability of the determined
potential to crystalline phases of SiO2, we calculated
the volume dependences of the energies for the α and
β modifications of cristobalite, quartz, and tridymite,
as well as for keatite, coesite, moganite, saferite, and
stishovite. These dependences calculated with the LP-
DeePMD and HP-DeePMD potentials are presented
in Fig. 2. It is seen that the LP-DeePMD potential
reproduces very well the equations of state of tetrahe-
dral phases (see Figs. 2a–2h and 2k), but it cannot
describe octahedral phases (see Figs. 2i and 2k). This
result is not surprising because the local structure of a
melt at zero pressure has only tetrahedral configura-
tions. However, the inclusion of high-pressure liquid
configurations, which include octahedral configura-
tions, makes it possible to reproduce the equations of
JETP LETTERS  Vol. 117  No. 5  2023

Fig. 1. (Color online) Correlations between the VASP and De

vs.
states of saferite and stishovite along with the descrip-
tion of tetrahedral phases with almost the same accu-
racy. In addition to the equations of states, we calcu-
lated vibrational densities of states (Fourier transforms
of the autocorrelation function of the velocity) at tem-
peratures and pressures in the region of stability of a
certain phase using the HP-DeePMD potential and
DFT for all crystalline phases studied in the work (see
the insets of Fig. 2). It is seen in Fig. 2 that the devel-
oped potential ensures a high accuracy of the calcula-
tion of vibrational spectra compared to ab initio calcu-
lations. Differences at low frequencies are due to a
rather short length of molecular dynamics trajectories.

Thus, the DeePMD potential parameterized only
on disordered configurations can correctly describe
the energies and vibrational properties of crystalline
phases, which is a nontrivial result.

EVOLUTIONARY SEARCH
To verify the possibility of predicting stable crystal-

line structures with the liquid MLIP, we used the HP-
DeePMD potential to optimize structures and to cal-
culate their enthalpies in the evolutionary search with
the USPEX code [26–28]. Using this method, we
determined both the most stable and metastable crys-
talline phases at pressures of 0 and 10 GPa. This prob-
lem for SiO2 is very difficult because this system has
not only phases present in the equilibrium phase dia-
gram but also tens of metastable phases differing in
energy by several meV per atom. For this reason,
search for stable phases of SiO2 is difficult even with ab
initio calculations [29]. In particular, the experi-
mentally most stable -quartz is in the 56th and
29th places in the energy-ordered lists of possible
structures in the databases of known computational
materials science projects materialsproject.org and
oqmd.org, respectively. Therefore, the successful test

α

ePMD results for the (а) energies and (b) force components.

vs.

f

f
c
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Fig. 2. (Color online) Volume dependences of the energy obtained with the DeePMD potentials and in the DFT calculations with
the VASP for (a) α-cristobalite, (b) α-quartz, (c) α-tridymite, (d) -cristobalite, (e) -quartz, (f) -tridymite, (g) keatite,
(h) moganite, (i) saferite, (j) coesite, and (k) stishovite. The insets show vibrational densities of states obtained with the
HP-DeePMD potential and in ab initio molecular dynamics simulation with the VASP.

β β β
of the potential in this search is not even the correct
prediction of stable phase but good correlations
between DeePMD and VASP predictions of the ener-
gies of the structures. Figure 3 shows such a correla-
tion for structures found using the USPEX code with
the HP-DeePMD potential. A pronounced linear cor-
relation is seen between the ab initio and DeePMD
energies (the Pearson correlation coefficient is 0.987).
The standard deviation of the DeePMD energies from
the DFT values is 59 meV/atom. However, the cor-
relation curve in Fig. 3 includes a noticeable number
of metastable structures with energies differing from
the energies of experimentally observed phases by sev-
eral electronvolts per atom. Such nonphysical struc-
tures are always generated in the evolutionary search.
Obviously, their local structure can significantly differ
from the local structure of the liquid and their energies
can hardly be reproduced well. However, this does not
affect the efficiency of searching for stable configura-
tions because the correct description of the energies of
phases in a certain quite narrow energy range is
important in this case. Such a range in Fig. 3 is marked
by a green ellipse covering the enthalpy range of
(‒8, –7) eV/atom (cf. the energies of stable structures
in Fig. 2). The standard deviation of the DeePMD
energies from the DFT values in this range is notice-
ably smaller and is 29 meV/atom.

The analysis of the found structure shows that
Si atoms are in all cases in the tetrahedral and octahe-
dral environments of O atoms at P = 0 and 10 GPa,
respectively, which is observed for all known low- and
high-pressure phases of SiO2, respectively. The results
also reproduce the existence of tens of structures with
close energies (differing by several meV per atom).
Among the most stable structures at zero pressure, we
found β-cristobalite with space group no. 227. The
evolutionary search at 10 GPa indicates that the most
stable structure has space group no. 136 and corre-
sponds to stishovite, which is the most stable high-
pressure phase of SiO2. Figure 4 shows the partial
radial distribution functions of β-cristobalite and
stishovite in comparison with the functions of the cor-
responding structures from crystallographic data-
bases. Peaks of the calculated distribution function of
JETP LETTERS  Vol. 117  No. 5  2023
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Fig. 3. (Color online) Correlation between the DeePMD
and DFT energies of crystalline structures predicted by the
USPEX code with the DeePMD potential. The inset
shows the EDFT – EDeePMD deviation distribution histo-
gram. The green ellipse marks the energy range corre-
sponding to the most stable structures (cf. the energy range
of experimentally observed structures in Fig. 2).

eV

Fig. 4. (Color online) Partial radial distribution functions
for crystalline phases of SiO2 found by the evolutionary
search with the USPEX code in comparison with the
experimentally observed functions for (a) -cristobalite at
P = 0 and (b) stishovite at P = 10 GPa; these structures are
visualized in the insets.

–
–
–
–
–
–

–
–
–
–
–
–

β

stishovite are slightly shifted toward larger distances
because the experimental sample was under a pressure
of about 30 GPa, whereas the calculation was per-
formed for 10 GPa.

CONCLUSIONS
To summarize, liquid–crystal structure inheri-

tance in machine-learning potentials for network-
forming systems has been studied. It has been shown
that MLIPs parameterized only on high-temperature
disordered configurations can reproduce the proper-
ties of crystalline phases with an ab initio accuracy
and, moreover, can predict their structure using evo-
lutionary algorithms. More precisely, the volume
dependences of the energies of known crystalline
phases of SiO2 have been calculated with an ab initio
accuracy using the DeePMD potential parameterized
on configurations of the SiO2 melt in the temperature
range of 3000–4500 K and the pressure range from
1 atm to 70 GPa. In addition, it has been shown that
the evolutionary search implemented in the USPEX
code allows one to predict the structure of β-cristob-
alite and stishovite and, even more important, to
describe well the energies of all found structures com-
pared to ab initio calculations.

The results obtained demonstrate a close relation
between the structures of crystal and liquid for net-
work-forming systems. This relation not only is of fun-
damental importance but also makes it possible to use
MLIPs parameterized on liquids as initial potentials
for the construction of MLIPs for crystals. Applying a
genetic algorithm to a MLIP parameterized only on
liquids, one can obtain a set of crystalline structures
that should be subsequently included in the extended
training dataset used to additionally train the MLIP.
This self-consistent scheme will allow one to develop
MLIPs for systems for which a priori information on
crystalline structures is either absent or limited. We
note that the successful implementation of this idea
requires the application of active training algorithms
to create a representative set of disordered configu-
rations.

The reported results pose a number of new funda-
mental questions. How can the accuracy and compu-
tational efficiency of the proposed scheme be
increased? Is this method applicable to the study of
complex multicomponent systems? What are classes of
systems where liquid–crystal structure inheritance is
fairly pronounced and can be used to construct
MLIPs? These questions require a separate study and
stimulate the development of new lines of research in
computational materials science and condensed mat-
ter physics.
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