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grable Calodgero–Moser system of particles has been established.

DOI: 10.1134/S0021364023600088

INTRODUCTION
Joint systems of differential equations naturally

appear in various fields of physics and mathematics.
The monodromy of joint systems is specific because it
is independent of small deformations of a contour
along which it is calculated, and the monodromy
matrix itself is very interesting. Aharonov and Bohm
[1] proposed an important example of the phase incre-
ment of an electron in zero magnetic field beyond a
cylindrical region (inaccessible to the electron) but
with a nontrivial vector potential.

In modern theoretical/mathematical physics, joint
systems of equations occur in the two-dimensional
conformal field theory; in particular, correlation func-
tions of vertex operators in the Wess–Zumino–
Novikov–Witten model obey the system of Knizhnik–
Zamolodchikov equations [2]. Matsuo [3] and
Cherednik [4] demonstrate that the Knizhnik–Zamo-
lodchikov equations are closely related to the Calodg-
ero–Moser system. It is also known that the Knizh-
nik–Zamolodchikov equations are closely related to
the Casimir connection discovered by De Concini,
Millson, and Toledano Loredo (see [5] and references
therein). The Casimir connection commutes with the
Knizhnik–Zamolodchikov equations. In this work,
the Casimir connection is determined for the 
superalgebra, and the Matsuo–Cherednik correspon-
dence is established for this case.

SOME PROPERTIES
OF THE  SUPERALGEBRA

The main properties of the  superalgebra are
as follows.

Let  and 
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The  algebra is generated by , where 
with the relations

(2)

where
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The tensor product  of representations of superalge-
bras is defined so that eigenoperators of the parity
operator that act nontrivially only in the ith and
jth tensor factors satisfy the relation

(4)

In the basis  existing in ,  means
that  are matrix units.

Let  with certain  and ; then,
the graded permutation is defined as follows:

(5)

JOINT SYSTEM OF EQUATIONS
The Knizhnik–Zamolodchikov equations for the

function  with values in , where 
is the vector representation of , have the form
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where  is the graded permuta-
tion,  is the parity function defined in the supple-
mentary material, and  is the generator of the

 superalgebra that acts nontrivially only in the
ith tensor factor V as a matrix unity in a certain basis
(see the supplementary material).

One of the main statements of this work is that the
following system of equations is consistent and commutes
with Eqs. :

(7)

where . This statement is proved in the
supplementary material.

MATSUO–CHEREDNIK CORREPONDENCE

In this section,  is set in the definition
of V.

To establish the Matsuo–Cherednik correspon-
dence for Eqs. , the following convectors con-
structed in [6] are needed:

(8a)

(8b)

Here, , where  is the permutation

corresponding to the transposition  and
 is a certain decomposition of the permu-

tation into the product of transpositions. Since  sat-

isfies the braid group relations, the element  is
defined correctly.

To verify that the convectors given by Eqs. (8a) and
(8b) are eigenvectors of the operators

(9)

where , similar properties can be proved for the
vectors . A simple calculation shows that

(10)

The symmetrization or antisymmetrization of the
right-hand side of Eq. (10) certainly gives Eq. (9).

It is easily seen that the Knizhnik–Zamolodchikov
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operators ; consequently, the following condition
can be imposed on the solution:

(11)

Then, such solutions satisfy the relations

(12a)

(12b)

where .

Relation (12a) was proved in [6]. To prove
Eq. (12b), it is sufficient to write the following relation
for the -infinitesimal operator  in parentheses in
Eq. (7):

(13)

Details of this calculation are presented in the supple-
mentary material.
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