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Using stereographic projection approach, we develop a theory for calculation of dynamic susceptibility tensor
of Skyrmion crystals (SkX), formed in thin ferromagnetic films with Dzyaloshinskii–Moriya interaction and
in the external magnetic field. Staying whenever possible within analytical framework, we employ the model
ansatz for static SkX configuration and discuss small f luctuations around it. The obtained formulas are
numerically analyzed in the important case of uniform susceptibility, accessible in magnetic resonance exper-
iments. We show that, in addition to three characteristic magnetic resonance frequencies discussed earlier
both theoretically and experimentally, one should also expect several resonances of smaller amplitude at
somewhat higher frequencies.
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INTRODUCTION

Magnetic skyrmions are topologically protected
particle-like configurations of local magnetization,
appearing particularly in noncentrosymmetric mag-
nets [1] with Dzyaloshinskii–Moriya interaction
(DMI). Skyrmions are studied as perspective building
blocks for novel computer memory devices [2], pro-
grammable logic devices [3], or even artificial neural
network devices [4]. It was observed that skyrmions
are usually arranged into regular lattices both in bulk
compounds [5] and thin films [6–9]. Skyrmion lat-
tices, named also skyrmion crystals (SkX), attract the
attention of researchers because of their applications
to magnonics [10].

One skyrmion can largely be considered as a small
magnetic bubble, whose motion can be described by
Thiele equation [11]. But even a single skyrmion is a
complex structure, which has its own dynamics that
cannot be described in terms of skyrmion’s displace-
ment only. There are also deformations of the skyr-
mion’s form, such as dilatation, elliptical distortions,
triangular distortions, etc. [12, 13].

It was shown that the energy band structure of SkX
should possess a Goldstone mode [14], associated
with the displacement of skyrmions’ centers. Besides
this mode there are many other branches of different
symmetry [10, 15, 16], associated with, e.g., elliptical
deformation, clockwise (CW) rotation, counterclock-
wise (CCW) rotation and breathing mode (Br) of sky-
rmions.

One can observe and explore SkX excitations by
several methods, among them inelastic neutron scat-
tering [17], optical inverse-Faraday effect [18], mag-
netic resonance (MR) technique. In the latter tech-
nique it was shown [19] that CW and CCW modes are
observed when oscillating component of magnetic
field is directed in the plane of SkX and the breathing
mode is observed for the field perpendicular to the
plane, in accordance with the earlier prediction by
means of numerical simulations [15].

It was also demonstrated that other (octupole and
sextupole) modes can manifest themselves in MR
experiments in bulk SkX systems with strong cubic
magnetocrystalline anisotropy, which hybridizes these
modes with Br and CCW excitations [20, 21].

In this study we discuss the MR response of SkX
formed in thin films with DMI and in presence of
magnetic field at low temperatures. We find that
beyond the lowest-energy CW, CCW and Br modes,
there are also higher-energy modes of the same sym-
metry. Therefore, they should also be visible in MR
response experiment, although with a much smaller
the magnitude of the corresponding signals.

MODEL
We consider a thin film of Heisenberg ferromagnet

with Dzyaloshinskii–Moriya interaction an in uni-
form magnetic field, B, perpendicular to the film. The
energy density is given by

(1)μ μ μ μ∂ ∂ − ∂ −E ε 3= ,
2 i i ij i j
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with C and D are exchange and DMI constants,
respectively. This is perhaps the minimal model where
the SkX exists (apart from centrosymmetric frustrated
magnets (see [22, 23]). We ignore here the dipole-
dipole interaction, which in the long-wave limit and in
the planar case can be replaced, with a good accuracy,
by the easy-plane anisotropy term. It is known, that if
the anisotropy is smaller than the magnetic field mag-
nitude, then the phase diagram is largely unchanged
[24, 25], so we omit anisotropy terms for simplicity.

We take the low temperature limit, when the local
magnetization is saturated to its maximum value

, and . It is convenient to measure length
in units of , and energy density in units of

. Then the energy density (1)
becomes dependent only on the dimensionless field

. It turns out that in a range
 the static configuration for  corre-

sponds to SkX, extensively discussed in the literature
[12, 26–28].

We first discuss a general formalism for the calcu-
lation of susceptibility, valid for any topologically non-
trivial spin configuration, and subsequently apply this
formalism for the special case of SkX [29]. In the ste-
reographic projection method, we represent the unit
vector  along the local magnetization as

(2)

where  is a function of a complex variable
 and a conjugate one ;  are

spatial coordinates. The expression for  acquires
highly nonlinear form in terms of , presented else-
where [29].

We consider the dynamics of the local magnetiza-
tion in Lagrangian formalism, , with the
kinetic term given by

(3)

here ϕ and θ define the magnetization direction
. This leads to the

Landau–Lifshitz equation,  with  is a
gyromagnetic ratio, and  is an effective
magnetic field.

Absorbing the factor  into the time redefini-
tion, the kinetic term may be written in terms of the
complex function f as

(4)

We study the dynamics of local magnetization by
considering small f luctuations of the stereographic
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function, , around the static field, , provid-
ing the minimum of total energy, , and write

(5)
with ψ is time-dependent function and α is a small
parameter of the theory, clarified below. We then con-
sider the expansion .

NORMAL MODES

For properly chosen function  the first order terms
are absent, , and the second order terms are

(6)

with the Hamiltonian operator  of the form

(7)

with . Here U, V and 
are rather cumbersome functions of  and its gra-
dients, see [29].

The Lagrangian (6) results in the Euler-Lagrange
equation

(8)

and the energies of normal modes, , are found from

(9)

with  the third Pauli matrix. The solutions to Eq. (9)
are discussed at length in [29]. They form the complete
orthonormal basis, with , which
allows to expand every function ψ (together with its
conjugate, ) as

(10)

where  and  are mutually complex-conjugated
numbers, which become boson creation and annihila-
tion operators upon the second quantization proce-
dure. The Hamiltonian then takes the familiar form,

.

MAGNETIZATION EXPANSION
The expansion in  of local magnetization is

given by:
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with  defined by (2) with , and

(12)

is a complex r-dependent vector with the following
property: three vectors ReF, ImF, and n form the
orthonormal basis.

Substituting (10) into (11) we write to the lowest
order in α

(13)

Using canonical commutation relations, ,
and the completeness of the basis , one can
check that taking the value  we obtain the
relation

(14)

which is expected in the linear spin-wave theory.

SUSCEPTIBILITY

Our aim is to calculate the dynamic susceptibility
tensor, , which is the Fourier
transform of the spin retarded Green’s function

(15)

Using the above formulas, we can write

(16)

The amplitude of the spin wave with the energy  and
the wave-vector k is given by

(17)

As a result, we obtain the general expression

(18)

We should note here that index n of the mode 
assumes both the wave-vector k and the number of the
magnon band, see [29]. In the important case of

, relevant to MR experiments and discussed
below, the above formula is somewhat simplified.

For the uniform susceptibility, we set  and
denote . Generally, we expect that the ten-
sor  contains symmetric and antisymmetric part,
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and the only chosen direction in our problem, Eq. (1),
is normal to the plane, . We can then write:

(19)

SUSCEPTIBILITY OF SkX
Let us introduce our ansatz for the SkX, that was

thoroughly discussed elsewhere [27–29]. We found
that the stereographic function of SkX can be well
approximated by a sum of stereographic functions of
individual skyrmions:

(20)

where , , and a is a cell
parameter of SkX. The stereographic function  of
individual skyrmions has a simple pole at the skyr-
mion’s center and decreases at the infinity, and we
write it in the form:

(21)

where real-valued  is associated with skyrmion size,
and κ is a profile function, that can be found numeri-
cally [27]. We notice that a good approximation for κ
is the Gaussian profile with a width dependent on b. In
the absence of B and D our ansatz (20) with 
becomes the exact description of a multiskyrmion
configuration [30]. For SkX configuration at non-zero
B and D the optimal parameters a and  are obtained
from the minimization of the energy density (1),
see [27, 28].

Using the ansatz (20) for the static SkX configura-
tion , we calculate the magnon wave functions cor-
responding to  in (9), for 36 lowest energies,

. The above formulas (12) and (17) are combined
for calculation of susceptibility components, Eq. (19).

The results of this calculation can be summarized
as follows.

(i) Only some of the normal modes of the spectrum
are visible, thanks to selection rules, provided by the
matrix elements  in (19). Specifically, the symme-
try of the corresponding magnon wave function at the
center of skyrmions, , defines this visibility.
The modes with magnetic quantum numbers 
show up in  and the modes with  define .
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Fig. 1. (Color online) Imaginary part of (a) transverse, ,
and (b) longitudinal, , components of a susceptibility (19)
as a function of magnetic field b. The area of each circle is

proportional to the weight, , of each delta-function.
Three well known lowest resonances: breathing (Br),
clockwise (CW) and counterclockwise (CCW) are clearly
visible, together with higher energy modes of smaller
intensity.

⊥χ
χ�

2
,| |j nA

Fig. 2. (Color online) Spectral weight of eight resonances
depicted in Fig. 1 as a function of magnetic field b.
The lowest-energy modes with  were
dubbed “counterclockwise” (CCW), “breathing” (Br)
and “clockwise” (CW), respectively, thanks to their
dynamic pattern discussed elsewhere [15, 29].

(ii) In case of CCW and CW modes the antisym-
metric part of susceptibility, , is equal in absolute
value to its diagonal part, , with the residues

 and , res-
pectively.

(iii) In contrast to previous studies, we observe sev-
eral modes with increasing energies for each m, which
can in principle be observed experimentally. Gener-
ally, the increase in  is accompanied by the decrease
in the weight of the corresponding resonance, i.e., the
residue  in (19). We graphically represent the
position of the MR lines and their weight in Fig. 1.
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(iv) It is seen in this figure that the most intense
lines correspond to lowest frequencies, which have a
tendency to decrease with the external magnetic field,
b. Labeling CW (CCW) in Fig. 1a is done according to
sign of , as explained above.

(v) The intensity of the lines, , in (19) are plot-
ted separately in Fig. 2 as a function of applied field.
We see that at higher fields, , close to the
melting point of SkX, the intensities of secondary
CW2 and Br2 modes become comparable to the inten-
sity of the main CW mode. This prediction would be
interesting to check experimentally.

Summarizing, we present the theory of the
dynamic susceptibility of skyrmion crystal in the
framework of stereographic projection approach. The
obtained formulas are quite general and do not assume
a specific type of skyrmion ordering. Applying our
theory to hexagonal lattice of Bloch-type skyrmions
we show the existence of several resonant frequencies,
of which only three lowest ones were previously dis-
cussed in the literature.
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