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Forces with a large radius of interaction can have a significant impact on the equation of state of matter. Low-
mass neutrinos generate a long-range potential due to the exchange of neutrino pairs. We discuss a possible
relationship between the neutrino masses, which determine the interaction radius of the neutrino-pair
exchange potential, and the equation of state of neutron matter. Contrary to previous statements, the ther-
modynamic potential, when decomposed into the number of neutrino interactions, vanishes in any decom-
position order, except for the interaction of two neutrons. In the one-loop approximation, long-range multi-
particle neutrino interactions are stable in the infrared region for all neutrino masses and do not affect the
equation of state of neutron matter or the stability of neutron stars.
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Among the fermions of the Standard Model, neu-
trinos are the lightest particles. Their masses are at least
six orders of magnitude smaller than the mass of any
other charged fermion. The exchange of low-mass par-
ticles creates a long-range potential. The exchange of
massless photons, e.g., leads to the Coulomb potential.
Since neutrinos are fermions, long-range two-body
forces can involve them through the formation of neu-
trino pairs [1–5]. The neutrino-pair exchange poten-
tial is similar to the van der Waals potential arising from
the two-photon exchange (see, e.g., [6]). Weakly inter-
acting light bosons provide an excellent illustration of
the significant influence of weak forces with large
interaction radii on the equation of state (EoS) of neu-
tron matter and the structure of neutron stars [7, 8].

Fischbach [4] considered the effect of long-range
multiparticle interactions of neutrinos on the EoS of
neutron matter and concluded that the contribution of
neutrino interactions to EoS diverges in the infrared
region. To guarantee the finiteness of EoS and, ulti-
mately, the stability of neutron stars, he postulated a
lower limit for the neutrino masses of  eV.
Cosmological models place an upper limit on the sum
of neutrino masses of 0.13 eV [9]. According to
KATRIN experiment on tritium  decay, the upper
limit on the effective electron neutrino mass is 0.8 eV
[10]. Fishbach’s estimate is close to these limits and
partly intersects with them, which requires a thorough
analysis of multiparticle neutrino interactions in
nuclear matter. In relation to the KATRIN experi-
ment, the mass constraint [4] is discussed in a recent
paper [11].

Abada, Gavela, and Pinea [12] address the effect of
multiparticle neutrino interactions in neutron matter
using the standard techniques of quantum statistics
(see, e.g., [13]). The authors confirm an infrared
instability of EoS in each order of decomposition by
the number of interactions, but conclude, neverthe-
less, that the total contribution of multiparticle neu-
trino interactions to the EOS of neutron matter is zero.

In this paper, we show that, contrary to the previ-
ous statements [4, 12], the multiparticle interactions of
neutrinos are stable in the infrared region and, more-
over, their contributions vanish at each term of the
EoS expansion into a power series with respect to the
number density. The structure of neutron stars is
thereby not sensitive to the masses of neutrinos.

The effective Hamiltonian for low-energy interac-
tion of neutrinos and neutrons is generated by the
exchange of the Z boson. We consider the case of
Dirac neutrinos. After averaging the neutral weak cur-
rent of quarks over the neutron wave function, the
effective Hamiltonian takes the form

(1)

where  is the axial coupling constant of nucleons. The
axial component of the weak current, which indicates
the direction of the average spin of neutrons, vanishes in
unpolarized matter, so the Z-boson mean field, U, is a
pure vector. The massive neutrino interacts with the
potential U by its left component only. In mean-field
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approximation, . The
typical number density of neutrons is  fm–3.
The typical Fermi momentum of neutrons is a few
hundred MeV, whereas the Z-boson mean-field
potential equals  eV. We work in
the approximations of homogeneous neutron matter
and flat Minkowski space. These approximations are
well-founded for neutrinos with masses greater than
the inverse radius of neutron stars; i.e., 

 eV, where  km.
It is useful to define projection operators

, , and ,
where  and  is the unit vector oriented
in the direction of neutrino momentum.

The effective Lagrangian of a neutrino with mass m
has the form:

(2)
The Green function is defined by the quadratic form
of the effective Lagrangian. In the momentum repre-
sentation,

(3)

The change in the thermodynamic potential, Ω,
due to an interaction is given by the well-known
expression (see, e.g., [13])

(4)

In the case under consideration,  is the
effective Hamiltonian (1) with the scaled coupling
constant. In terms of the Green function,

(5)

where V is the normalization volume. This expression
implies a smooth thermodynamic limit ,

. In a realistic approach, the number of par-
ticles in a star is finite, although large. The neutrino
propagator should be expanded into a power series by
the neutron number density, i.e., by the parameter U,
and the series should be truncated at s ~ N ≡ 
1.2 × 1057, where  is the mass of the Sun, and  is
the mass of the neutron. Each term, proportional to

, describes the scattering of neutrino by s neutrons.
If the series converges, the limit  is well
defined and the decomposition is not required.

The papers [4, 12] declare that for massless neutri-
nos, the individual terms of the series are proportional
to . If this were true, the infinite series would
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diverge because . Abada et al. further
argue the transition to the limit of  by the pos-
sibility for neutrinos to scatter several times on the
same neutron. Multiple scattering involving the same
neutron is possible only in higher orders of the loop
expansion, whereas Abada et al. work in the one-loop
approximation. In this approximation, the transition
to the limit of  is not allowed if the series does
not converge.

We expand the expression (5) in a series by U. The
integration by λ gives

(6)

The relations ,  lead to the identity

(7)

In terms of the projection operators defined above,
. Using the binomial

formula for  and the relations , ,
the right side of Eq. (7) can be simplified to give

(8)

Closing the contour of integration by  in the upper
half of the complex plane, we find that the integral is

determined by the residues at .
Using the symbolic computing software package
Maple,1 it is possible to find the residues and the cor-
responding integrals over the momentum space for
quite large s. It turns out that all the terms 
of the series vanish identically. After regularization of
the neutrino loop, the term  becomes finite,
whereas the terms  vanish. For , the inte-
gral over an infinitely distant contour in the upper half
of the -plane cancels the contribution of the residue

at .
After performing the Wick rotation  and

assuming that the limit  can be interchanged
with the momentum integral, a more general proof can
be offered. The integration by ω goes within the limits

. The spherical coordinate system in the
Euclidean space  is defined by ,

, , and
. The angles are restricted by

, , . The absolute value of

1 https://www.maplesoft.com/.
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momentum is . The volume element is
. The radial variable η

takes values in the interval . After integration
over the angles, the expression (8) becomes

(9)

All the terms in Eq. (6) vanish for , because
 for integer s and the integral in the η vari-

able converges. There is  uncertainty for the val-
ues . The ultraviolet divergence in the radial
integral is eliminated by the regularization, in which
case the terms  similarly vanish.

The term  is stable in the infrared region, as
evidenced by the neutrino-pair exchange potential for
zero neutrino mass [1]:

(10)

Additional contributions to the potential (10) arise
from loops involving charged fermions of the Standard
Model at distances closer than the electron’s Comp-
ton wavelength and from loops involving heavy bosons
of the Standard Model at distances closer than the
Z boson’s inverse mass.

The upper bounds on the neutrino masses [9, 10]
are much lower than the effective neutrino potential

 eV. Under these conditions, the
interaction potential (10) is modified as a result of
neutrinos being trapped by the effective potential U to
create a condensate. In old neutron stars with tem-
peratures around 100 eV, only a fraction of the discrete
neutrino levels are occupied in thermal equilibrium
with the neutrons. The effect of neutrino condensate
on the EoS of neutron matter is negligible [12, 14].
The experimental prospects of detecting the neutrino-
pair exchange force in neutrino backgrounds are dis-
cussed in [15].

We examined the multiparticle contributions of the
neutrino interactions to the thermodynamic potential.
The infrared divergences discussed earlier in the liter-
ature are actually absent in each individual term of the
decomposition (6) and, thus, in the sum. As a conse-
quence, the limit  is unnecessary, and keeping
the number of particles large but finite is sufficient to
provide the required proofs. All of the components in
Eq. (6) vanish for massless and massive neutrinos,
with the exception of the two-body interaction, which
is negligible. Thus, under the one-loop approxima-
tion, long-range multiparticle interactions of neutri-
nos have no impact on the structure and stability of
neutron stars.

η α| | = sinq
η η α α β β γ4 3 2= sin sind q i d d d d

+∞(0, )

ξ→

− η α × α α β β γ
η +

π − η πξ−
η + ξ ξ −


2

2 2

2 2 2

( ) 2 cos( ) sin sin
( )

16 ( ) sin( )= .lim
( ) ( 4)

s

s

s

s s

i s d d d
m

i
m

≤ +∞5 <s
πsin( ) = 0s

∞ × 0
= 1,3,4s

= 1,3,4s

= 2s

π

2

nn 3 5( ) = .
16

FGU r
r

− ρ −∼= / 2 20FU G

→ ∞N
ACKNOWLEDGMENTS
The author sincerely thanks the organizers of the ITEP

Astrophysical Seminar for drawing his attention to the
paper [11] and the participants of the seminar for interesting
discussions. The manuscript’s preparation assistance from
Nadezhda Lisitsyna is greatly appreciated.

FUNDING
The work was supported by the Russian Science Foun-

dation, project no. 23-22-00307.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

OPEN ACCESS
This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

REFERENCES
1. G. Feinberg and J. Sucher, Phys. Rev. 166, 1638 (1968).
2. S. D. H. Hsu and P. Sikivie, Phys. Rev. D 49, 4951

(1994).
3. J. A. Grifols, E. Masso, and R. Toldra, Phys. Lett. B

389, 563 (1996).
4. E. Fischbach, Ann. Phys. (N.Y.) 247, 213 (1996).
5. A. Segarra and J. Bernabeu, Phys. Rev. D 101, 093004

(2020).
6. C. Itzykson and J.-M. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980), p. 705.
7. M. I. Krivoruchenko, F. Simkovic, and A. Faessler,

Phys. Rev. D 79, 125023 (2009).
8. D.-H. Wen, B.-A. Li, and L.-W. Chen, Phys. Rev. Lett.

103, 211102 (2009).
9. T. M. C. Abbott, M. Aguena, A. Alarcon, et al. (DES

Collab.), Phys. Rev. D 105, 023520 (2022).
10. M. Aker, A. Beglarian, J. Behrens, et al. (KATRIN

Collab.), Nat. Phys. 18, 160 (2022).
11. E. Fischbach, D. E. Krause, Q. le Thien, and C. Scar-

lett, arXiv: 2208.03790v1 [hep-ph] (2022).
12. As. Abada, M. B. Gavela, and O. Pinea, Phys. Lett. B

387, 315 (1996).
13. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics,

Part 2: Theory of Condensed State, Vol. 9 of Course of
Theoretical Physics (Pergamon, New York, 1980),
p. 397.

14. A. Yu. Smirnov and F. Vissani, arXiv: 9604443v2 [hep-
ph] (1996).

15. M. Ghosh, Yu. Grossman, W. Tangarife, X.-J. Xu, and
B. Yu, arXiv: 2209.07082v2 [hep-ph] (2022).
JETP LETTERS  Vol. 117  No. 2  2023


	REFERENCES

		2023-03-11T15:01:25+0300
	Preflight Ticket Signature




