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The problem of deconfinement phases in strongly correlated systems is discussed. In space–time dimension
, a competition of confinement and Coulomb phases occurs, but in  the confining phase

dominates owing to monopole proliferation, but Dirac points can change the situation. Combining the Kot-
liar–Ruckenstein representation and fractionalized spin-liquid deconfinement picture, the Mott transition
and Hubbard subbands are treated, general expressions in the case of an arbitrary bare band spectrum being
obtained. The transition into a metallic state is determined by condensation of a gapless boson mode. The
spectrum picture in the insulating state is considerably influenced by the spinon spin-liquid spectrum and
hidden Fermi surface.
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1. INTRODUCTION
The problem of Mott (metal-insulator) transition

[1] is very old, but is still of interest and importance.
Usually this transition occurs in antiferromagnetic
phase (Slater scenario, see [2, 3]), but the situation
changes for frustrated systems: only the paramagnetic
metallic and insulator state are involved, a spin liquid
being formed [4, 5]. The transition into insulator state
is related to correlation Hubbard splitting (the Mott
scenario). In the Mott state the gap in the spectrum is
essentially the charge gap determined by boson exci-
tation branch. Therefore the electrons become frac-
tionalized: the spin degrees of freedoms are deter-
mined by neutral fermions (spinons), and charge ones
by bosons. The corresponding slave-boson represen-
tation was first introduced by Anderson [6, 7].

In fact, boson and fermion are coupled by a gauge
field, so that the problem of confinement occurs [7].
The transition into the metallic confinement state is
described as a Bose condensation, the electron
Green’s function acquiring the finite residue. On the
other hand, in the insulator state the bosons have a
gap, so that the spectrum is incoherent (the electron
Green’s function is a convolution of boson and fer-
mion ones) and includes Hubbard’s bands.

New theoretical developments provided a topolog-
ical point of view for the Mott transition, since spin
liquid possesses topological order (see reviews in [8,
9]). Phase transitions in frustrated systems (e.g., in a
triangular lattice [10]) can be treated in terms of topo-

logical excitations (instantons, monopoles, visons,
vortices) which play a crucial role for confinement.

In the present work we analyze the metal-insulator
transition from the topological point of view in the sit-
uation of spin-charge separation. In Section 2 a gen-
eral picture of confinement and deconfinement in a
gauge field theory is discussed. In Section 3 we adopt
the deconfinement picture and apply the Kotliar–
Ruckenstein slave-boson representation to calculate
the spectrum of Hubbard subbands and investigate the
Mott transition into the spin-liquid state, the relation
of charge gap in the boson spectrum and Hubbard
splitting being established.

2. GAUGE FIELD AND VORTICES: 
COULOMB AND HIGGS PHASES 
IN THE BOSE MOTT INSULATOR

In a general case of a correlated electron system we
have a material field interacting with an effective gauge
field, its singularities determining the monopole phys-
ics. Fluctuations of the gauge field can be treated as
fluctuations of spin chiralty, which are important for
the transport properties of Mott systems.

A useful analogy is given by the charged Bose liquid
in a magnetic field where one has to take into account
the gauge invariance. Here, the magnetic field pene-
trates into the sample as vortex filaments which carry
unit f lux quanta and can originate and terminate at
instantons and anti-instantons [11, 12]. Then the

+= 3 1d += 2 1d
48



HUBBARD BANDS, MOTT TRANSITION AND DECONFINEMENT 49
quantization of the magnetic f lux and the Meissner
effect occur, similar to situation in a superconductor.

In the pure gauge model, the magnetic monopoles
(instantons)—the point singularities of the gauge
field—occur, which are non-local excitations of the
system, interacting according to the Coulomb law. In
the case of compact field, a confinement situation can
occur owing to the monopoles.

With adding a material field (in the simplest model,
a scalar Bose field) interacting with the gauge field, the
situation is more complicated: the Higgs effect (occur-
rence of the gauge boson mass) can result in formation
of a new “Coulomb” phase which is essentially a
deconfined phase.

A formal theory starts from the Anderson–Higgs
action for the gauge field interacting with a material
field [7, 11–13],

(1)

Here,  is the space–time lattice point, and μ, ν deter-
mine the direction in the lattice. The difference oper-
ator  reads  the angular
continuous variable  and the field  are com-
pact and defined on a plane in the interval , q is
an integer charge, g is the coupling constant of the
gauge field, the constant  determines coupling to the
material field and is related to the Higgs length R,

. The second term in the action (1) can be
represented in terms of potential energy (f luxes of
electric charge) and kinetic energy (effective magnetic
field) [13]. A picture of confinement can be qualita-
tively explained as competition of these energies [9, 12,
13]. In the case of a strong coupling , only the electric
term is important, the energy of the closed loop of the
flux being proportional to its length. The magnetic
term in this case makes possible for loops to f luctuate,
but always leaves them closed. For small g, the gauge
field is deconfining. The conservation of the f lux in
the topological phase with a non-compact field means
the conservation of the charge, and consequently the
presence of bosons.

The pure gauge model in  is always con-
fining at arbitrarily small coupling constant [14] owing
to occurrence of instantons which provide tunneling
events. In the presence of a material field, the situation
can change due to the Higgs phenomenon. The phase
diagram for  case contains the Higgs-con-
finement phase and Coulomb (free charge, small g)
phase, see Fig. 1 of [12]. A crossover between the
Higgs and confinement states is also possible. In the
Coulomb phase, the gauge field is deconfining and
massless, and the Bose field remains disordered.
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On the other hand, the phase diagram for 
was debatable. For small g, where gauge f luctuations
are weak, the system reduces to the XY-model weakly
coupled to a U(1) gauge field, which yields an ordered
Higgs phase at zero temperature. In the Higgs phase,
the gauge field acquires a gap by the Anderson–Higgs
mechanism. It is also gapped in the confinement
phase due to the screening of magnetic charges [7].
According to papers [15, 16], which considered the
free energy of the finite vortex segments, the XY tran-
sition remains at least for weak g, so that a finite region
of the Coulomb phase occurs. However, including the
effect of instantons for general β and g values leads to
a different result [12]: the Higgs-confinement phase is
better described as the confinement phase rather than
the Coulomb one, with the exception of the  line
where the XY-phase transition takes place. Thus for

 we have only the confinement phase where
the gauge field is massive due to instantons.

In the strong coupling (large g) limit the gauge field
does not have its own dynamics and provides the con-
straint of integer boson occupation at each lattice site,
resulting in an insulator state. Therefore the confine-
ment phase may be understood as a Bose Mott insula-
tor. This Mott phase turns out to extend to include the
entire phase diagram. The insulator-to-metal transi-
tion is essentially a condensation of charged bosons
coupled to a gauge field [4, 5].

The appearance and picture of the topological
excitations is explained in [15]. The pure XY model
without gauge potential has for  topological
singularities given by closed vortex loops which are
represented by a conserved topological current. The
topological singularities of the abelain Higgs model
are a combination af closed vortex loops and open
strings terminating on monopoles, and there are no
free monopoles. In the pure gauge theory for

, the singularities are monopole loops, i.e.,
“world lines” of monopole-antimonopole pairs. In
the XY model in , the currents are conserved,
and represent closed orientable surfaces (spheres and
spheres with handles). In addition to these closed sur-
faces, this model has excitations which are slices
through these surfaces (or windows on the surface)
which are bounded by the monopole loop. In

 current lines terminate on monopoles, and
in  a surface terminates on monopole loops.
Thus the topological excitations of this model are
closed “vortex” surfaces of dimension , and open
vortex surfaces of dimension  bounded by mono-
pole surfaces of dimension  [16].

In the consideration of two-band model [17], the
Fermi liquid (FL) state corresponds to the Higgs
phase, and the U(1) fractionalized Fermi liquid (FL*)
state to the Coulomb phase, the monopoles playing no
essential role. Indeed, the information on the com-
pactness of the U(1) gauge field is lost, since it
becomes effectively non-compact, so that monopole
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excitations are suppressed. In the U(1)  FL*
phase, which is an analogue of the Coulomb phase of
the compact gauge theory, the monopole gap is finite.
On the other hand, in the FL phase, the monopoles do
not exist being confined to each other due to the con-
densation of the boson field. In such a model, transi-
tion from small Fermi surface in FL* phase to large
Fermi surface in FL phase occurs. A similar descrip-
tion of the interaction- and doping-induced Mott
transition can be obtained [5, 18].

The compactness situation in  can change
in a gapless spin liquids with a large number of gapless
fermionic matter fields [5]. According to [19], in the
problem of a Fermi surface of spinons coupled to a
compact U(1) gauge field in two dimensions, one can
expect that monopoles are irrelevant for large number
of Dirac points N. Thus the monopole-free theory is
sensitive to Fermi surface instabilities. The evolution
of the phase diagram in the SU(N) model depending
on N has been recently investigated by using the
Monte Carlo method [20]. In , the large-N
limit does not play a role: U(1) spin liquids can exist as
stable phases in  even if the spinons are com-
pletely gapped [17, 19]. Note that in , the
state of Z2 spin liquid can occur, which is unstable with
respect to superconductivity [7, 11].

According to [21], the Fermi surface is a singularity
of the Green’s function, which is characterized by a
topological invariant and is protected by topology. The
situation is similar to the theory of superfluid liquid
which contains peculiar lines—vortex filaments. Each
such filament is characterized by a certain value of
velocity circulation along a closed contour encircling
the line. The vortex line in the frequency-quasimo-
mentum space cannot be destroyed by small perturba-
tions. This treatment can be supposed to be relevant
also for strongly correlated systems, in particular for
Mott insulators where the Fermi surface is expected to
be preserved even in the insulating phase. The conser-
vation of the Fermi surface at a quantum phase transi-
tion is supported by existence of a spinon Fermi sur-
face in the paramagnetic Mott insulator phase [5, 17].
Thus in the gapped (e.g., Mott phase) the usual Fermi
surface does not exist, but is transformed and becomes
ghost (hidden). Then the Luttinger theorem (the con-
servation of the volume enclosed by Fermi surface) is
still valid [21]. This idea was also applied to a half-
metallic ferromagnet [22].

An analogy with the above consideration of the
gauge field with account of electric charge can be
mentioned. In the case of non-compact gauge field
the picture corresponding to [21, 23] remains valid:
e.g., for  we have the Coulomb phase. How-
ever, for the compact field (e.g., for ) we have
tunneling events (monopole proliferation) resulting in
confinement, vortex segments being broken into
pieces, see Fig. 2 of [12]. In such a way, we can expect
instabilities of the Fermi surface.
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3. MOTT TRANSITION AND HUBBARD 
BANDS IN THE KOTLIAR–RUCKENSTEIN 

REPRESENTATION
The Mott transition can be interpreted as a soften-

ing of an auxiliary Bose excitation. To describe this
transition, a number of works [5, 24–26] applied the
rotor representation which is simple, but not quite
convenient, since it does not include explicitly the
spectrum of both Hubbard bands. An alternative
description of the transition and Hubbard bands can
be obtained by using the Kotliar–Ruckenstein slave-
boson representation [27]. This problem was consid-
ered in [28, 29] for usual paramagnetic state by using a
Gutzwiller-type approach. Here we propose a more
advanced treatment taking into account spin-liquid
formation.

The representation [27] uses the Bose operators ei,
 and Fermi operators :

(2)
with the constraints

(3)

the factors  being somewhat arbitrary, but in the
mean-field approximation for a non-magnetic state
we can put  [29]. Also in this approximation

we can put . The corresponding Lagrangian
of the Hubbard–Heisenberg model reads

(4)

Although the Heisenberg interaction is obtained in the
Hubbard model as an effective superexchange interac-
tion (in the second order of perturbation theory), for
convenience it is explicitly included in (4). In the
mean-field approximation the Lagrange factors 
corresponding to (3) are site-independent. In the
insulator phase we have [28] 
being the chemical potential for an infinitesimally
small electron (hole) doping (added or removed parti-
cle), . Here

is the critical value for the Mott transition in the

Brinkman–Rice approximation, 

the average non-interacting energy,  the bare den-
sity of electron states.
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The calculation of the Green’s function for the
boson combination  yields (cf. [29])

(5)

(6)

where the spectrum of boson (holon-doublon) sub-
system is given by

(7)

Here, we have taken into account the boson self-
energy

(8)

which is obtained by a simple decoupling of the first
term in (4) and is essentially the Harris–Lange correc-
tion [30].

The dispersion of bosons is influenced by details of
fermion spectrum which is determined by the  f-sys-
tem state. Spin degrees of freedom can be treated sep-
arately with the Heisenberg Hamiltonian in the
f-pseudofermion representation. Under some condi-
tions, one can expect formation of a spin-liquid state
where excitation are essentially spinons—neutral fer-
mions.

The mean-field picture of spinon spectrum Ek can
be stabilized in the case of a non-compact gauge field
or by gapless Fermi excitations. In the insulator state
this spectrum is not influenced by bosons, various
spin-liquid phases being obtained [7]. For a square lat-
tice, in the uniform RVB (uRVB) phase Ek ~

. In the π-flux (πFl) phase (which

contains Dirac points) ;
this spectrum is obtained using the SU(2) invariance
of the Heisenberg interaction. Also, gapped Z2 phases
can occur if the next-nearest-neighbor interaction is
present.

In the absence of considerable k-dependence of 
(a localized spin phase without fermion hopping), Σ
tends to zero. However, for a spin liquid we have a
sharp Fermi surface. Although, generally speaking,
the spinon spectrum form differs from bare electron
one, for  we still have  since the spi-
non band is half-filled and the chemical potential (the
position of the Fermi energy) is fixed.

In the nearest-neighbor approximation, after pass-
ing in (8) to the coordinate representation one can see
that the spectrum of spinons and correction to holon
spectrum differ, roughly speaking, only in the replace-
ment of J by t ( , cf. [7] for the 
model). In particular, we have
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(9)

for the uRVB and πFl phases, respectively. In the
large-U  limit we have

We stress that our interpretation of spectrum is dif-
ferent from that in [29] where the limit of vanishing
renormalized electron bandwidth (i.e., in the Mott
phase where the averages ) is treated in a
Gutzwiller-type approach. It is important that a char-
acteristic scale of spinon energies is small in compari-
son with that of electron ones, so that the spinon
Fermi surface is strongly temperature dependent; this
situation is somewhat similar to the case of magnetic
order. Note also that for magnetically ordered phase
such approach does not work since the above approx-
imation for factors g is not valid [31].

At the critical point we should have:

(10)

where η is the anomalous critical exponent of the
boson field at the  XY fixed point [32]. Since η is
small, the bosonic sector behaves roughly as in the
absence of gauge field while the spinon spectrum is
considerably modified by this [5].

The observable electron Green’s function is
obtained as a convolution of the boson and spinon
Green’s functions. Since as a rule , an account
of this spinon smearing (unlike of the boson disper-
sion, which is also related to spinon energies) does not
strongly influence the shape of density of state. Then
we can put  to obtain the
Hubbard bands with the energies  for vanish-
ing electron (hole) doping with energies near 0 and U,
respectively,  being the corresponding chemical
potential [29]. This spectrum corresponds to upper
and lower Hubbard subbands with the width of order
of bare bandwidth, the gap vanishing at the transition
point .

In fact, spinons are not fully free. At some points in
the Brillouin zone the interaction with the gauge field
owing to constraint  (which is approxi-
mately satisfied owing to (3)) can play an important
role. In the leading order in  (e.g., for large num-
ber of Dirac points N), one has for the spinon field

 [33, 7]:
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with anomalous dimension  ( ) at

the  point. Here ,  is the inte-
gration along the straight return path and  includes
integrating out the gauge f luctuations. Then the
observable electron Green’s function, being again
obtained as a convolution, demonstrates a singular
non-quasiparticle behavior [33]:

(12)

where the subscript 0 means neglecting gauge f luctua-
tions.

4. DISCUSSION
Field-theoretical approaches including a gauge

field enable one to describe efficiently formation of
the correlated Hubbard bands. In the deconfinement
conditions, the structure of spectrum is strongly influ-
enced by the spinon excitations and should demon-
strate a strong temperature dependence. The expres-
sions for the Green’s functions obtained can be used to
calculate the optical conductivity, cf. [29].

As discussed in Section 2, the boson picture can
provide integer site occupation, i.e., Hubbard’s pro-
jection. As well as the consideration of the chiral spin
liquid, where the physical quasiparticles are spinons
dressed by a π vortex [8, 9], the mutual Chern–
Simons theory [34] enables one to realize the no-dou-
ble-occupancy constraint. Here, the quantization of
the f lux of the gauge fields with unit value of π results
in integer values of spinon and holon occupation
numbers.

Although most theoretical investigations are per-
formed in , spin-liquid states can occur in
some three-dimensional systems, e.g., pyrochlores
[35, 36]. Even if an instability with respect to magnetic
ordering or superconductivity occurs in the ground
state, a spin-liquid-like state can occur in an interme-
diate temperature regime [17], especially in frustrated
systems.

We see that the picture of Mott transition into a
non-magnetic ground state is connected with topolog-
ical features: the deconfined spin-liquid state involved
includes fractionalization and long-range many-parti-
cle quantum entanglement [9]. Generally, description
of the correlated paramagnetic phase, which may have
a complicated internal structure, is an important
problem. Further developments are connected with
the string condensate theory [37] where the lines of the
effective electric f lux, discussed in Section 2, deter-
mine strings. The details of the string picture are
determined by the coupling constant g field, . At
large g, potential energy dominates, so that the closed
loops of the electric f lux become constricted. On the
contrary, at small g the kinetic energy, whose role is
played by the magnetic field, prevails, so that many

α = π232/3 N = 2N
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loops are present. The corresponding deconfinement
phase is the quantum spin liquid—the condensate of
large strings, and fermions appear as ends of open
strings in any dimension.

Recently, a number of investigations of the Mott
insulator problem including spin-liquid states have
been performed, various scenarios of deconfinement
and Fermi surface instabilities being proposed [38–
40]. In the model [39], two scenarios of the transition
from the Mott insulator (chiral spin liquid) can arise.
If holons condense, a chiral metal with enlarged unit
cell and finite Hall conductivity is obtained. In a sec-
ond scenario, the internal magnetic f lux adjusts with
doping and holons form a bosonic integer quantum
Hall state which is identical to a  superconduc-
tor. The transition of holons from Mott insulator or
the Hall state to superfluid is described by Bose con-
densation in , so that the electron Fermi sur-
face arises.

The paper [40] treated the SO(4) bosonic topolog-
ical transition. The corresponding model is defined on
the double layer honeycomb lattice and includes spin-
orbit coupling. There occurs a featureless Mott phase
and two bosonic symmetry-protected topological
phases which are separated by quantum phase transi-
tions. A fermionic transition corresponds to the Dirac
semimetal and two bosonic topological transitions.
This example demonstrates disappearance of the
Fermi surface at the topological transition.
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