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Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate
fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian
of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the
LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but
also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global sin-
gle qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency
and the number of ions.
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1. INTRODUCTION
Quantum computing with trapped ions has shown

significant progress over the last couple of decades [1–
5]. The main advantages are the highest-fidelity quan-
tum computing gates, long coherence times, inherent
uniformality and all-to-all connectivity [6–11]. Now-
adays the attention has shifted from miniature archi-
tectures towards more practical implementations
requiring to scale up the computer performance [12–
19]. Scaling does not only mean having more qubits
but also having the ability to control and measure a
large number of ions, to keep high performance of
gates achieved in the few-ion proof-of-principle sys-
tems independent on the number of qubits or the
number of required operations [20], [21]. Overall, sys-
tem performance is known to degrade for large ion
crystals [1]. Therefore, it is crucial to understand scal-
ing of finite errors in quantum gates with the system
size due to noise, decoherence, and control imper-
fections.

The dynamics of single-qubit gates in trapped-ion
systems is typically described using Lamb–Dicke
approximation meaning the exclusion of the phonon
modes [2, 7, 22]. The leading term contribution of this
approximation does not contain the phonon modes,
whereas the second one scales as . Here η is the
Lamb–Dicke parameter, Ω is the Rabi frequency, n is
the occupation of the phonon mode. Given finite
heating rates in experiments the importance of the
second term increases as the time elapses. Fault toler-

ant quantum computations require infidelities ranging
from 10–2 to 10–4 [23–25]. This becomes crucial for
long gate sequences required by quantum algorithms,
because every next gate will have worse fidelity.

Here we present systematic analysis on the depen-
dence of the single qubit gate fidelities on the occupa-
tion of the phonon modes beyond Lamb–Dicke
approximation. In particular, we consider optical Cal-
cium ion qubit and perform numerical simulation of
the action of the gate  usually described as the
following unitary operation [2], [7]:

(1)

where φ is the phase of the laser, and angle  is
controlled via the gate time τ. We focus on such
parameters as the different numbers of ions (up to
4 ions in the chain), the phonon mode occupation,
the strength of the Lamb–Dicke parameter and the
gate time.

The paper is organized as follows. Section 2 con-
tains the description of the considered trapped ions
single qubit gates and Hamiltonian of the problem.
Section 3 gives details of simulation methods used to
calculate gate fidelity. Results and conclusions are
presented in Section 4, 5.
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2. SYSTEM HAMILTONIAN

To take into account gate errors coming from the
phonon mode excitations and finite values of the
Lamb–Dicke parameter, we use the full Hamiltonian
of a chain of N equal ions in a linear Paul trap poten-
tial. It consists of electronic (qubit) part, motional
part and atom-light interaction:

(2)

Here, indices p and j refer to the ion index in the chain
and to the choice of the Cartesian axis , respec-
tively,  is the qubit transition frequency, ω is the
laser frequency,  is the frequency of the normal

mode k along axis   are creation/annihilation
operators of the normal mode k along axis j, k is the
wave vector of the laser,  is the quantized coordi-
nate of the center of mass of ion p. The product 
gives characteristic ion–phonon interaction strength
called the Lamb–Dicke parameter, responsible for
population leakage from ion states to the phonon
states. We assume the ideal harmonic potential of the
trap and disregard micromotion coming from the
dynamics of the ions inside the Paul trap. Therefore,
the spectrum of normal modes depends only on the
axial  and the radial  trap secular frequencies, and
the motional part is represented by a set of indepen-
dent phonon modes described as quantized oscilla-
tors. The laser–ion interaction part in (2) is responsi-
ble for the interaction between the qubits and the pho-
non modes and is considered in the rotating wave
approximation. In the frame of the normal mode
description of motion the coordinate of the ion is
expanded in the following way [26, 27]:

(3)

Here,  denotes ion equilibrium positions,  is the
phonon modes identity operator, m is the mass of the
ion,  is the matrix-element of transition matrix S
from the ion coordinates to the phonon modes, and
the Lamb–Dicke parameter  is defined as follows:

(4)

standard derivation of the action of  gate assumes
that the phonon modes state does not change during
the gate operation [2, 7]. Given small values of the
Lamb–Dicke parameter, the exponential operator
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 in  (2) can be expanded with respect to

.
To take into account the finite phonon mode occu-

pation numbers, the second order of this expansion
can be included in Eq. (1) as a correction to the Rabi
frequency, as follows (up to the second order, for
higher orders see [28]):

(5)

where  is the occupation number of mode k along
axis j. Numerical simulations allow us to make step
forward and to take into account not only heating
effects, but also the effects related to ions-to-mode
and inter-ion entanglement. They occur because of
the changes in the phonon mode occupations during
gate operation and come from the expansion terms not
included in corrections to the Rabi frequency (5). To
study these effects, we numerically integrate the
Schrödinger equation for ion–phonon wavefunction
with Hamiltonian (2) and compute gate fidelities as
functions of time for different experimental parame-
ters (see Section 4). The numerical simulations are
performed with QuantumOptics.jl package [29] of
Julia language [30].

3. CALCULATION OF FIDELITY
In this work we consider only globally addressed

single qubit gates along the chain (see Fig. 1), and
imply that only axial phonon modes influence the ion
chain dynamics via Eq. (2). We present the initial ion–
phonon wavefunction in the form of a tensor product
of the N axial phonons and N qubits:

(6)

where  is a Fock state with  phonons in the axial
phonon mode k,  is the initial wavefunction for a
qubit p. We present all the qubit initial states as the
ground state of the qubit.

To compute the fidelity of the  gate, at first,
we find the wavefunction 
obtained after the action of the ideal operator:

(7)

where  is evolution operator

with axial phonon Hamiltonian 

describing the free evolution of an oscillator. Second,
the wavefunction  is obtained under evolution
with the full Hamiltonian (2):

(8)
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Fig. 1. (Color online) Individual and global addressing of
a chain of trapped ions in a Paul trap.

Fig. 2. (Color online) Computed fidelities of the single-
qubit gates (top panel)  and (bottom panel)  versus
the angle θ. The results were obtained for three ions for
zero initial phonon mode occupations. The dotted line
represents the fidelity , when the phonon modes are
traced. The thick solid line represents the projected fidelity
F. The thin solid line shows the entanglement entropy 
between all phonon modes and ions.

1G 15G

F

entS
Finally, the fidelity is calculated via projection of the
final state wavefunction onto the ideal state of the
phonons and the qubits . Computed fidelities
depend on the initial state of the phonon-ion system
and the gate duration.

We distinguish two types of fidelities  and F,
determined in the following way:

(9)

(10)

Function  corresponds to the measurement in which
the states of the phonon modes cannot be resolved,
whereas F implies that the phonon modes can also be
measured. In particular,  is calculated with tracing
out the phonon modes and projecting the final qubit
state on the ideal one. The function F includes the
phonons in the ideal state via projecting the final pho-
non-qubit wavefunction onto the ideal one.

Comparison of these two types of fidelities allows
one to quantify the entanglement between ions and
modes. In the next section we show the results of our
analysis and compare these two functions for fidelity
calculation. To verify the existence of an entanglement
we also compute the von Neumann entanglement
entropy between ions and phonon modes according to
the following formula:

(11)
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4. RESULTS AND DISCUSSION.
In this work we consider gates with two different

magnitudes of Rabi frequencies referring to them as
gates  and . The chosen values of Ω correspond to
the  pulse duration of 1 μs ( ) and 15 μs ( ).
Another simulation parameters are the axial secular
frequencies, which affect the normal frequencies and,
hence, the Lamb–Dicke parameters. The values of
the axial secular frequencies are taken from the exper-
imental works [2, 7] and are equal to  MHz unless
otherwise stated.

First, we study the difference between the two types
of fidelities  and F. For that, we assume the absence
of the phonons in the system and compute  and F for
a chain of 3 ions as shown in Fig. 2. The two panels
refer to the gates  and , and qualitatively show
that fidelities  and F differ from each other. This dif-
ference indicates that the states of the ions and the
phonon modes got entangled during the gate opera-
tion. To verify this, we compute the entanglement
entropy between ions and phonons and, indeed, see
that the extrema of the entanglement entropy coincide
with the oscillations of the traced fidelity (see upper
panel in Fig. 2).

The oscillations are also present in the case of the
slow gate , but their amplitude is much smaller, as
the amplitude of the entanglement entropy oscilla-
tions. Comparison of the two panels in Fig. 2 also
shows that the magnitude of the gate error and the
amplitude of the fidelity oscillations increase with the
gate speed. The difference between the two types of
fidelities does not exceed 6 × 10–4. Further we use only
projected fidelities as in numerical simulations we can
accurately take into account the phonon modes and
their occupations.
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π/2 1G 15G

π ⋅2 1

F

F
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Fig. 3. (Color online) Computed fidelities of the single-
qubit gates (top panel)  and (bottom panel)  versus
the angle θ. The initial state of phonon modes is

 Different line styles distinguish differ-
ent cases depending on how the ideal gate operation was
simulated: using corrections for the Rabi frequency (the
colored lines except the dash-dotted one) from Eq. (5) or
without the corrections (dash-dotted line). The number of
modes/phonons taken into account for the corrections is
specified in the legend.

1G 15G

 COM 2 3| = |211 .n n n
Now we will focus on the understanding of the
mechanisms responsible for the gate errors: heating,
entanglement, or both. For this we compute the gate
fidelities F by projecting the final state  onto the
modified ideal state calculated with corrected Rabi fre-
quencies (see Eq. (5)). Corrected  includes only heat-
ing effects. We did the simulations for three ions, for the
initial phonon mode occupation ,
and for the cases listed below:

(1) no corrections are taken into account;
(2) only vacuum corrections are included; i.e., the

Rabi frequency in ideal gate is changed according to
Eq. (5) with  (this calculation requires only the
knowledge of the normal mode frequencies);

(3) only the occupation of the center of mass
(COM) mode and the vacuum corrections are
included; i.e., the Rabi frequency in ideal gate is
changed according to Eq. (5) with the phonon mode

ψ final|

Ω

 COM 2 3| = |211n n n

= 0kn
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Fig. 4. (Color online) Computed fidelities of single-qubit gates (
gate time expressed in units of . The line styles distinguish diθ π/
occupation  (requires the knowl-
edge of the normal frequencies and the COM mode
occupation number);

(4) all the corrections are taken into account; i.e.,
all the corresponding  are included into Eq. (5) (this
implies the knowledge about all the normal frequen-
cies and the occupation numbers).

The results are shown in Fig. 3. One can see that
fidelity improves significantly, when corrections to the
Rabi frequency are included. The main contribution
comes from the COM mode. In fact, it is comparable
with the case when all the corrections are included.
Importantly, the latter holds if initial COM mode
occupation is greater or equal to the initial occupation
of any other mode. The minimum infidelity of 10–4 is
achieved for the gate , when the corrections for all
the modes are included. For the fast  gate the situa-
tion is worse: the oscillations of fidelity cannot be
removed by correcting the Rabi frequency. As it was
mentioned above, these oscillations come from the
entanglement between the phonon modes and the
ions. Contrary, the envelope characterizing the degra-
dation of the gate over its duration is attributed to the
occupation of the phonon modes and, in fact, can be
compensated using Eq. (5).

Further we explore the impact of the finite initial
phonon mode occupation on the gate fidelity F and
the amplitude of their oscillation. The results of the
numerical simulations for three ions and for the gates

 and  are shown in Fig. 4. Overall, an increase in
the phonon mode occupation leads to a more rapid
decrease in the fidelity. The amplitude of the oscilla-
tions again scales with Ω. It also increases with the
phonon mode occupation number. The largest contri-
bution to the infidelity and to the amplitude of its
oscillation comes from the population of the COM
mode similar to the Fig. 3. We associate this fact with
the magnitude of Lamb–Dicke parameter, which is
the largest for the COM mode.

To confirm this, we study the dependence of the
fidelity on the Lamb–Dicke parameter for the initial

 COM 2 3| = |200n n n

kn

15G
1G

1G 15G
top panels)  and (bottom panels)  for three ions versus the
fferent mode occupations depicted in the legend as .

1G 15G
COM 2 3|n n n
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Fig. 5. (Color online) Computed fidelities of single-qubit
gates  versus the angle θ and initial phonon state taken
as one phonon in the COM-mode and no phonons in all
the other modes. Line styles correspond to the different
numbers of ions specified in the legend: (a)  for
one ion (corresponds to the axial secular frequency

 MHz), (b)  for one ion (corre-
sponds to the axial secular frequency 
0.5 MHz), and (c)  for one ion (corresponds to the
axial secular frequency  MHz).

15G

η ≈ 0.25

ω π ×= 2 0.15a η ≈ 0.14
ω π ×= 2a

η ≈ 0.1
ω π ×= 2 1.0a
phonon mode state  corresponding to a single
phonon in a COM mode. Since η scales down with the
square root of the number of ions ( ) and the
axial secular frequency, we modified those parame-
ters. The results are summarized in Fig. 5. The axial
secular frequency  was chosen from the range

 taken from [7, 2]. Indeed, we observe
less profound decrease in the fidelity as the ion chain
gets longer and for the larger axial frequencies.

5. CONCLUSIONS

In this work we have studied the performance of
global single-qubit gates depending on the Lamb–
Dicke parameter, gate time, the number of ions, and
the initial phonon mode occupation numbers. We
have performed numerical simulation of the action of
the  gate using full Hamiltonian of the system (2).
This allows us to take into account the two effects
responsible for gate errors: entanglement between the
qubit states and the phonon modes and phonon mode
heating which leads to the finite occupation of the
phonon modes. Qualitatively, the gate fidelities
improve for slower gates (small Rabi frequency ) and
small Lamb–Dicke parameter η. For the slow gates
(e.g.,  pulse duration is of 15 μs), the gate perfor-
mance can be well characterized with modified Rabi
frequency using Eq. (5), whereas for gates as fast as 
(the  pulse duration is 1 μs) numerical simulations
are required to include the entanglement effects. In
particular, we observe the oscillatory time dependence
of the gate performance which cannot be taken into
account solely using corrections to the Rabi frequency

|100

−= [1 4]N

ωa
π2 [0.15,0.5,1.0]

φ θ( )R

Ω

π/2

1G
π/2
according to Eq. (5). This oscillatory effect originates
from the ion–phonon entanglement. Its period and
amplitude scale with the Rabi frequency Ω, the
Lamb–Dicke parameter η and the phonon mode
occupation number.

The developed software package will be used to
optimize single-qubit gate parameters for experimen-
tal setup handling trapped ions and will be also
extended for mixed species chains. The results and
analyses will be useful for error mitigation in quantum
algorithms performed on ions, optimization of long
gate sequences as well as the development of new vari-
ational algorithms taking into account present error
models.
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