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A new concept of topological organization of microstructures that maintain the ultrastrong coupling of two-
level systems to a photon field and have the topology of a network (graph) with a power-law node degree dis-
tribution has been proposed. A phase transition to the superradiant state, which leads to the formation of two
dispersion branches of polaritons and is accompanied by the appearance of a nonzero macroscopic polariza-
tion of two-level systems, has been studied within the mean field theory. It has been found that the specific
behavior of such a system depends on the statistical characteristics of the network structure, more precisely,
on the normalized second moment  of the distribution of node degrees. It has been shown that
the Rabi frequency can be significantly increased in the anomalous regime of the network structure, where ζ
increases significantly. The multimode (waveguide) structure of the interaction between matter and field in
this regime can establish a ultrastrong coupling, which is primarily responsible for the high-temperature
phase transition.
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An increase in the efficiency of the interaction
between light radiation and matter is one of the funda-
mental problems of modern quantum technologies
(see, e.g., [1]). Currently available materials allow
strong and ultrastrong coupling at this interaction [2].
Strong matter–field coupling implies the periodic
energy exchange between two-level systems (TLSs)
such as atoms, quantum dots, and excitons and the
quantized field of a cavity [3–5].

The strong-coupling regime appears if the single-
photon Rabi frequency  exceeds the spontaneous
decay rate, dephasing rate, and losses in the cavity;
modern experiments with cold atoms allow the obser-
vation of vacuum Rabi splitting reached with a single
atom (see, e.g., [3]). However, the improvement of the
collective matter–field coupling parameter is a more
important practical problem for quantum informatics
involving various physical systems of quantum infor-
mation processing and transmission (see [6, 7]). The
Rabi splitting frequency in this case depends on the
collective coupling parameter  between
TLSs and field, which demonstrates an increase in the
field–matter coupling parameter by a factor of ,
where N is the number of TLSs interacting with the
single-mode cavity field. In this case, the effective
Dicke spin, which can be assigned to the ensemble of
TLSs, behaves as a giant quantum oscillator effectively
coupled to one quantized mode described by the
parameter g (see [8]).

Researchers have recently focused on obtaining the
(collective) ultrastrong coupling regime of TLSs with
the cavity field (cf. [2, 9, 10]). In particular, the ultra-
strong coupling regime occurs after one bypass around
a traditional Fabry–Perot cavity at the collective cou-
pling of the ensemble TLSs to the quantized (multi-
mode) field (see [2, 9, 11, 12]).

At the same time, a small volume of the cavity and
a high dipole moment of TLSs make it possible to
reach a high collective coupling parameter g or even g0,
which can be comparable with the frequency ωph of the
cavity field; i.e., g0/ωph ~ 0.01–1 [1]. The ultrastrong
coupling regime with g0/ωph = 0.12 was experimentally
achieved with superconducting f low qubits coupled to
the mode of a transmission line resonator in the
microwave frequency range [10]. The achievement of
ultrastrong coupling of the field to the atomic or semi-
conductor TLSs is an important and very difficult
problem because the parameter g0/ωph is very small,
10–6 and 10–3, respectively, in existing experiments
(cf. [3, 13]).

In this work, to achieve ultrastrong coupling
between the quantized field and matter, we propose
for the first time to use certain topological properties
of network structures. More precisely, we propose to
organize an artificial structure (material) in the form
of a graph (network), which allows ultrastrong cou-
pling between the collective spin of ultrastrong TLSs
located at nodes and modes of waveguides, which are
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Fig. 1. (Color online) Samples of network structures with power-law node degree (photon channel) distributions  with
the power-law exponent γ = (a) 1.5, (b) 2.5, and (c) 5 shown in panel (d) on a log–log scale. The inset in panel (d) shows  and
ζ versus γ on a log–lin scale for the network architecture with N = 100 nodes and kmin = 2.
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edges of the graph (cf. [14]). We suggest that the topol-
ogy of such a graph (network) corresponds to a power-
law node degree distribution, which is widely used in
information science to study various information pro-
cesses in real networks [15]. In particular, hubs that
can appear in such networks ensure much faster and
reliable information transmission [16].

The main aim of this work is to determine the effect
of the network architecture on the Rabi splitting and
the appearance of a high-temperature phase transition
to the superradiant state.

The phenomenon of superradiance is usually dis-
cussed in two limiting cases. First, superradiance is
considered in significantly nonequilibrium systems
including TLSs and a field under certain conditions
for the characteristic times of relaxation and collective
processes in a medium (see, e.g., [17–20]). Second,
superradiance is considered as a result of a second
order phase transition occurring in the thermodynam-
ically equilibrium system consisting of TLSs and the
quantized field (see, e.g., [21, 22]). Obviously, such a
division is physically conditional because the total
thermodynamic equilibrium in the system including
TLSs and the quantized field is hardly possible. How-
ever, it is possible sometimes to obtain coupled states
of atomic or exciton systems and the quantized field
that are close in properties to thermodynamically
equilibrium states and can demonstrate collective
superradiance effects and/or Bose–Einstein conden-
sation (cf. [13, 23, 24]). In this case, it is necessary to
preliminarily prepare the medium and field for the
observation of the phase transition, where the influ-
ence of weak relaxation processes on the effect itself is
insignificant. This procedure is based on the thermal-
ization of coupled states of matter and field (dressed
states or polaritons) during which relaxation processes
play an important role (see, e.g., [25, 26]). The dis-
cussed phase transition is well distinguishable in
experiment from significantly nonequilibrium phase
transitions (e.g., lasing), which can occur in the same
JETP LETTERS  Vol. 115  No. 11  2022
system but at other pump parameters, difference
between the populations of TLSs, etc. (see, e.g., [13,
27]). In this work, we consider the thermodynamically
equilibrium phase transition to the superradiant state
within the topological model of the coupling of TLSs
to quantized radiation, which can be implemented by
means of various physical systems having specificity in
thermalization. The study of this specificity is an
extensive theoretical and experimental problem and is
beyond the scope of this work.

The proposed model consists of N TLSs that are
localized at nodes of the graph, as shown in Fig. 1, and
are in a thermodynamically equilibrium state at the
temperature T. The number of edges kj connecting the
jth node to other nodes is called the degree of this
node.

Various physical implementations of the material
with the graph architecture shown in Fig. 1 are possi-
ble. In particular, two-level atoms can be used as
TLSs; they can be confined on the surface of a two-
dimensional (photonic crystal) structure using the
Casimir–Polder effect [28]. In this case, the corre-
sponding confining potentials of individual atoms
induced by the attractive van der Waals forces form an
array of microcavities (cf. [29]). Coupling between
atoms can be ensured by the same (photonic crystal)
system of waveguides [30] or, e.g., using the technol-
ogy of direct laser writing of waveguide structures,
which is widely used currently to fabricate quantum
(photon) chips (see, e.g., [31]). In this case, wave-
guides which have ultralow losses of 0.1 dB/cm serve
as the edges of the graph. Another method to prepare
aperiodic structures under consideration is based on
the use of laser-induced microtraps for an ensemble of
cold atoms (see, e.g., [32–34]).

A microstructure with a network interface can be
developed using the existing technological methods to
control the topology of exciton-polaritons in semicon-
ductor Fabry–Perot microcavities with a high Q factor
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[35]. These methods are very physically diverse and
are aimed at the modification of the common micro-
cavity to obtain the required topological characteris-
tics. Alternatively, an array of micropillars, which are
microcavities with quantum dots and can be placed at
nodes of the graph, as shown in Fig. 1. The considered
artificial materials are of great interest for studying
various phase transitions, as well as the Bose–Einstein
condensation of exciton-polaritons, which can occur
at high temperatures.

Finally, a different promising method to imple-
ment graphs shown in Fig. 1 involves fiber optic tech-
nologies, which allow the design of metanetworks for
quantum communication and quantum Internet (see
[36, 37]).

The interaction of the photon field with a system of
TLSs within the waveguide graph structure shown in
Fig. 1 is described by the Hamiltonian

(1)

where  is the annihilation (creation) operator of
a photon of the mode of the vth waveguide,  is the
population inversion operator for the ith TLS, ω0,i is
the resonance frequency of transition of the ith TLS
from the ground to excited state, g is the coupling con-
stant of TLSs to the photon field having the frequency
ωph, and ℏ is the reduced Planck constant; for conve-
nient further presentation, we accept ℏ = kB = 1, where
kB is the Boltzmann constant. Hamiltonian (1) com-
mutes with the operator of the number of excitations
Nex, i of the ith node given by the expression

(2)

We use the mean field approximation within the
thermodynamic grand canonical ensemble approach
implying a nonzero chemical potential μ, which can be
included by substituting ω0,i = Ω0,i + μ and ωph =
Ωph + μ into Eq. (1) (see [38]). In addition, we assume
that all photon modes are in coherent states 
determined by the relation , where 
is the same real parameter for all nodes. This approxi-
mation is justified if modes are strongly overlapped
and have similar physical characteristics (cf. [22]).
Averaging of Eq. (1) over coherent states  gives

(3)
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where  is the order parameter for
Eq. (3) and Nph is the average number of photons in
the network structure.

Further, we determine the density of excitations

, which is the normalized average

total number of excitations and can be obtained from
Eq. (2) in the form

(4)

where  is the average collective pop-

ulation inversion. In the mean field approximation,
the partition function Z(N, T) = Tr(e–βH), where the
Hamiltonian is given by Eq. (3), has the form

(5)

where . Then, we suggest that the number of
nodes is sufficiently large, , and the structure of
the network allows the transition to the continuous

distribution : , where

 and  are the minimum and maximum degrees
of the kth node (see [14]). In this case, using Eq. (5)
and assuming that all TLSs are identical so that

, we obtain

(6a)

(6b)

where  = .

The system of Eqs. (6a) and (6b) describes the
main properties of the order parameter Λ appearing in
Eq. (6a) as an implicit variable and the density of exci-
tations ρ given by Eq. (6b) in the thermodynamically
equilibrium state. To solve the system of Eqs. (6a) and
(6b), it is also necessary to determine the chemical
potential μ for various topologies of the network. To
this end, we consider the networks with the power-law
node degree distribution function [16]

(7)

where γ is the power-law exponent. The network with
distribution function (7) satisfies the normalization
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Fig. 2. (Color online) (a) Order parameter Λ and (b) nor-
malized chemical potential μ/g versus the density of exci-
tation ρ at the normalized detuning Δ/g = 9, ω0/g = 3.52 ×
105, N = 100, kmin = 2, and T = 0 for γ = (brown) 1.5,
(violet) 1.7, (red) 2, (green) 2.5, and (blue) 4.5. The insets
show the same curves for the resonance case with Δ = 0.
condition , which means that the

network with N nodes has more than one node with

. According to Eq. (7), .

The statistical properties of the network are
described by the first, ( ), and second, ( ,
moments of the node degree distribution given by the
expression (cf. [14])
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The parameter  determines the main sta-

tistical properties of the considered network. The
power-law exponent regions 1 < γ < 2, 2 < γ < 3, and
γ > 3 correspond to anomalous, scale-free, and ran-
dom regimes for  and , respectively. The proper-
ties of networks with distribution (7) at γ = 2 and 3 are
calculated separately.

Figures 1a–1c show numerically simulated net-
work structures referring to the (a) anomalous, (b)
scale-free, and (c) random regimes. There are various
algorithms of generation of such networks with the
distribution close to Eq. (7) (see, e.g., [16]). Since the
number of nodes in practice is always limited (N = 100
for Fig. 1), the numerically determined node degree
distribution is discrete. It is represented by points in
Fig. 1d that are the probabilities that the nodes of the
networks in Figs. 1a–1c have the degrees correspond-
ing to these probabilities. The dotted lines in Fig. 1d
are approximations of these points by Eq. (7) with the
power-law exponents γ = (red) 1.5, (green) 2.5, and
(blue) 5 in the log–log scale.

The key feature of networks shown in Figs. 1a–1c
is the presence of hubs, which are clearly seen as sev-
eral points in the lower right corner of Fig. 1d. The
largest hub has the degree . The network in the
anomalous regime usually has the maximum number
of hubs (see Fig. 1a). On the contrary, the network
with the power-law node degree distribution in the
random regime is close in characteristics to a network
with the Poisson distribution for . The number of
hubs decreases with increasing γ; see the blue line
in Fig. 1d.

Figure 2 shows the self-consistent numerical solu-
tions of the system of Eqs. (6a) and (6b) for (a) the
order parameter Λ and (b) the normalized chemical
potential μ/g as functions of the density of excitations
ρ for Δ/g = 0 and 9, where Δ = ωph – ω0 in the limit

. The numerical estimates shown in Fig. 2 were
obtained for cesium atoms as TLSs with the transition
corresponding to the  line at the frequency
ω0/(2π) ≈ 352 THz [7, 20, 30]. The strong coupling of
these atoms localized on the surface of solids to quan-
tized radiation is currently achieved in experiments
(cf. [29, 30]). The calculations were performed with
g/(2π) = 1 GHz corresponding to microstructure con-
taining N = 100 atoms shown in Fig. 1.

As seen in Fig. 2а, the order parameter Λ increases
with ρ at resonance Δ = 0.

The expression for the chemical potential in the
limit of high temperatures  is easily obtained
from Eqs. (6a) and (6b) in the form

(9)
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This expression is one of the main results of this
work. It gives the upper ( ) and lower ( ) branches
of excitations of coupled states of the quantized field
and matter (cf. [39]) and makes it possible to deter-
mine the strong coupling condition.

At a low density of excitations, we can set ,
, which implies ρ ≈ –0.5; i.e., the ensemble of

TLSs is inversionless. In this case, Eq. (9) describes
two polariton branches, which can be obtained, e.g.,
with exciton-polaritons in semiconductor microcavi-
ties (cf. [13]).

At ρ = 0, the ensemble of TLSs is saturated when
the numbers of particles on the lower and upper levels
are the same, .

At ρ > 0, population inversion occurs in TLSs and
is maximal at ρ = 0.5 ( ). It is remarkable that the
ensemble of TLSs at a large detuning undergoes a
structural transition to a different (parametric) type of
excitations inherent in strong enhancement of radia-
tion at ρ > 0.5 (see Fig. 2 and [38]).

The condition for this transition can be determined
from Eq. (9) in the form . The brown line in
Fig. 2 does not satisfy this inequality, which corre-
sponds to increasing ζ at γ = 1.5.

According to Eq. (9), the Rabi splitting frequency
(the last term in Eq. (9)) increases significantly as a
function of ζ in the anomalous regime of variation of
the power-law exponent γ (see the inset of Fig. 1d).
Thus, the collective coupling of TLSs to the quantized
field can be strongly enhanced by choosing the appro-
priate power-law exponent γ, which determines the
topology of the system shown in Fig. 1.

The phase transition to the superradiant state can
be determined from Eqs. (6a) and (6b) with Λ = 0. The
critical temperature of the phase transition Tc is quite
simply represented for polaritons of the lower disper-
sion branch at Δ = 0 and has the form

(10)

This expression is another important result of this
work. It is seen that the critical temperature of the
superradiant phase transition Tc is proportional to ;
i.e., it is determined by the topology of the structure in
Fig. 1. It is noteworthy that the phase transition tem-
perature in the Ising model with the spin–spin cou-
pling characterized by the distribution function (7) is
finite and proportional to the parameter  (see [14]).

As seen in Eq. (10), the critical temperature
diverges Tc → ∞ at ρ → 0. This limit corresponds to
the saturation of TLSs. According to Eq. (10), the crit-
ical temperature of the superradiant phase transition
Tc can be very high even in the limit of a low density of
excitations because of the statistical properties of the
network itself, which are taken into account in Eq. (10)
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by means of the parameter ζ, which can be very large
in the anomalous regime (see the inset of Fig. 1d).

Expression (10) for a given temperature T in the
range of the density of excitations –0.5 < ρ < 0, i.e., for
an inversionless TLS, gives the critical parameter

(11)

which determines the statistical properties of the net-
work at the superradiant phase transition. In particu-
lar, the superradiant phase exists at ζ ≥ ζc. The behav-
ior of the order parameter at large ζ values and high
temperatures can be obtained from Eq. (6b) in the
form

(12)

where  is the parameter expressed in

terms of the key parameters of the coupled system of
the field and TLSs and xc is the value of this parameter
at the phase transition point ζ = ζc. Expression (12)
demonstrates that the number of superradiant photons
vanishes at the phase transition point, which is charac-
teristic of second order phase transitions.

Let us estimate the conditions for strong and ultra-
strong coupling of TLSs to the quantized field for
microstructures with the network architecture shown
in Fig. 1. At a low density of excitations (such that

), this condition can be obtained from
Eq. (9) in the form

(13)
where Γ is the depolarization rate, κ characterizes pos-
sible losses of photons (cf. [1]), and the first and sec-
ond inequalities are the strong and ultrastrong cou-
pling conditions, respectively.

It seems not difficult to satisfy conditions (13) for
microstructures with the network architecture shown
in Fig. 1 because of the properties of node distribu-
tion (7) and the behavior of the parameter ζ (see the
inset of Fig. 1d). In particular, it follows from Eq. (13)
that the parameters of the network that satisfy, e.g.,
the criterion  are sufficient to achieve
the ultrastrong coupling (cf. [10]). Networks with the
power-law node degree distribution in the anomalous
regime have numerous various coupling channels
between TLSs and the field, as well as numerous hubs,
which can ensure the satisfaction of this criterion.
In this case, to estimate the achievability of the ultra-
strong coupling, one can use the expression

 obtained from Eqs. (7) and (8).
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lyzed in Fig. 2 is  at  and N = 100.
For a microstructure with exciton-polaritons based on
GaAs semiconductor quantum dots, the coupling
constant to the quantized cavity field is  THz
at the resonance wavelength  nm, which
gives  at the same  and N values.

To summarize, a new concept of microstructures
having the topology of a network (graph) with a
power-law node degree distribution based on the
cooperative coherent coupling of two-level systems,
which are located at nodes of this network, to a quan-
tized optical field has been proposed. It has been
shown that the ultrastrong coupling regime can be
achieved owing to features of the network architec-
ture, which ensures the coupling of TLSs to the quan-
tized field through numerous waveguide channels
(edges of the graph) of the structure. The possibility of
the giant enhancement of collective matter–field cou-
pling by a factor of  has been predicted; this
enhancement is ensured primarily in the anomalous
region of the node degree distribution of the network
structure. The superradiant phase transition, which
occurs in the structure under consideration, has been
considered. It has been shown that the phase transi-
tion temperature significantly depends on the param-
eter ζ, which determines the statistical properties (the
first and second moments of the connectivity degree
distribution) of the network structure. This critical
temperature can be very high in the limit of a low
density of excitations for the anomalous region of the
network. The results obtained open qualitatively new
prospects for quantum information processing by
network and network-like systems, as well as for the
observation and study of phase transitions involving
polaritons in microstructures with the network
coupling topology at fairly high temperatures
(cf. [36, 37]).
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