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Magnetic films with easy plane uniaxial anisotropy are studied. It is shown that in these films structural
defects such as artificially created holes or nonmagnetic inclusions can give rise to vortex-like inhomogene-
ities with a topological charge. Analysis of their stability reveals parameters (the magnitude and direction of
electric currents, the number of holes, etc.) at which they form stable configurations suitable for information
encoding.
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1. INTRODUCTION
The structure and properties of vortex-like inho-

mogeneities (magnetic vortices, skyrmions, bimerons,
etc.) arising in certain classes of magnets are currently
under active investigation, stimulated by actual pros-
pects for their use in various spintronic devices, as well
as in the new generation magnetic memory devices
[1]. Such interest in them is also due to their topo-
logical protection, nanoscale, high mobility, and other
unique spin–electron characteristics [2–4]. In this
work, we extend the ideas outlined in [5] in application
to the simplest one-dimensional model and propose
another type of vortex-like inhomogeneities formed in
thin magnetic films with artificially created holes
(antidots [6]) or nonmagnetic inclusions.

2. CONTINUOUS MODEL
We consider a thin ferromagnetic film with strong

easy plane uniaxial anisotropy and one hole. Such
anisotropy implies that the magnetization vector
almost does not leave the plane of the film. Then, the
energy of the magnetic film can be approximately rep-
resented in the form [5]

(1)

where angle θ specifies the orientation of the in-plane
magnetization vector, A is the exchange integral, and
h is the film thickness. Here, we assume that the
demagnetizing fields in the material under study are
much lower than the exchange field.

In the case of a film without topological features,
functional (1) has a single minimum E = 0, which
takes place at θ = const and corresponds to the uni-

form distribution of magnetization. However, if there
is only one hole in the film (the feasibility of such
nanoscale perforations in practice is confirmed by
similar experiments with graphene [7]), this statement
becomes incorrect. Let us introduce a polar coordi-
nate system  in the plane and assume that the
magnetic material fills the region Rin ≤ r ≤ Rex, thus
having the shape of a perforated disk. In this case, in
addition to the homogeneous state, there will also
appear local minima, which are nontrivial solutions of
the Euler–Lagrange equation for functional (1),
namely, the Laplace equation Δθ = 0. The point is
that, with the specified sample topology, the angle θ
may no longer be a single-valued function of the
radius vector. Instead, it suffices to satisfy the physi-
cally equivalent condition θ(r, ϕ + 2π) = θ(r, ϕ) + 2πk,
where k is an integer. It is easy to see that, for a given
value of k, which in this case has the meaning of a
topological charge, θ(r, ϕ) = kϕ + const is a solution
of the equation Δθ = 0. Note that the solutions corre-
sponding to different values of k are topologically non-
equivalent, and the transitions of the magnetic mate-
rial between the corresponding states would be associ-
ated with arising discontinuities in the function θ(r, ϕ)
along some line within the disk. Then, according to
Eq. (1), the energy of the sample would become
infinitely large. Therefore, in the continuous approxi-
mation, all states under study are equally stable,
regardless of the k value.

Energy (1) of the magnetic disk in the state with the
topological charge k equals E = 2πk2Ahln(Rex/Rin). As
a result, the energy of the sample will increase
infinitely with Rex for any k ≠ 0. Thus, the above the-
ory can be applied in practice exclusively for thin rings
with Rex ≈ Rin (in this limiting case, we arrive at the

∇θ
2= ( ) ,E A hdS

ϕ( , )r
114



STRUCTURE OF MAGNETIC INHOMOGENEITIES IN FILMS 115

Fig. 1. Schematic of the film with two holes.

a

Fig. 2. Solitary inhomogeneity localized at two holes.
results obtained in [5]), while only the homogeneous
state of the magnetic material physically occurs in
unbounded films with one hole. However, the situa-
tion changes radically when the film contains two
holes rather than one. Let these holes be cylindrical
antidots of radii R1 and R2, and their centers be sepa-
rated by the distance a ≫ R1, R2 (Fig. 1). Then, since
the equation Δθ = 0 is linear, its solution can be found
as a superposition of the solutions obtained above for
the film with one antidot: θ = k1ϕ1 + k2ϕ2, where ϕ1
and ϕ2 are the polar angles in the coordinate systems
associated with the centers of the holes and k1 and k2
are integer topological charges. Consider the asymp-
totic behavior of the found solution at a large distance
from the system, when r1 ≈ r2 = r ≫ a. In this case,
ϕ1 ≈ ϕ2 = ϕ, so that θ = (k1 + k2)ϕ, and in the case of
k1 + k2 ≠ 0, the energy of an infinite film is again
infinite. To avoid this, we set k1 = k and k2 = −k. Then,
we have

(2)

Figure 1 clearly demonstrates that the difference of
angles involved in this relation is equal to the angle at
which the segment connecting the centers of holes is
visible from a given point, so that θ ∼ r−1, and hence
(∇θ)2 ∼ r−4, which ensures the convergence of inte-
gral (1) in the range of large values of r. Thus, the
energy of a magnetic material in the state under study
is finite. A detailed calculation shows that it is equal to

(3)

The distribution of magnetization near the holes,
given by Eq. (2) at k = 1, is schematically shown in
Fig. 1. The state with k = −1 is obtained from it as

θ ϕ − ϕ1 2= ( ).k

π 2
1 2= 4 ln( / ).E k Ah a R R
JETP LETTERS  Vol. 115  No. 2  2022
a mirror image; k = 0 corresponds to the uniformly
magnetized sample. States with other values of k are
not of interest for the further analysis.

3. DISCRETE MODEL

Passing to the lattice model [8], we consider a
square lattice of spins, some sites of which are empty.
Then, up to some factor, the energy of the magnetic
material minus the energy of the homogeneous state
has the form

(4)

where the summation in the first term is carried out
over all pairs of neighboring lattice sites along either
the horizontal or the vertical direction. In the second
term, the summation is performed over all sites located
at the edge of the lattice. The second term, which is
responsible for the unambiguous definition of the
homogeneous state of the magnet (θi = 0), allows us to
simulate the infinite length of the film: we assume that
inhomogeneities are localized within the lattice, while
all spins outside it are oriented in the same way.

We numerically optimize energy (4). Since all local
minima of the system are of interest, we use the sto-
chastic approach, in which the numerical optimiza-
tion is repeated many times, starting from various ran-
dom points. Further on, all found minima are ranked
by energy values, and one solution is selected for each
value (we assume that nonequivalent minima equal in
magnitude can hardly exist). As a result of such a
search for a lattice containing 188 spins, in addition to
the homogeneous state with E = 0, we find a local
minimum with E = 10.3. The corresponding distribu-
tion of magnetization is shown in Fig. 2. It is easy to
see that it exactly reproduces the state with k = 1,
which we predicted within the continuous model.
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Fig. 3. Magnetization distributions under the effect of electric current.
Although the discrete model provides an indepen-
dent confirmation of the suggested theory, this is not
its main advantage. The energy given by Eq. (4) is lim-
ited not only from below but also from above; conse-
quently, the transitions between any states of the lat-
tice can provide only finite work. This allows us to esti-
mate the stability of inhomogeneous states that are
treated as metastable ones. Such an approach, used
earlier in [5], made it possible to obtain nontrivial
results for the case of a closed loop of spins (one-
dimensional model). In the roughest approximation,
we can consider the transformation θi → (1 − t)θi,
which is continuous and relates the inhomogeneous
state at t = 0 to the homogeneous state at t = 1. Then,
E becomes a function of the parameter t, attains min-
ima at both ends of the segment [0, 1], and, therefore,
should also have a maximum within this segment. In
our case, the value of this maximum appears to be
Emax = 11.6. As a result, the work needed to destroy the
inhomogeneous state is about Emax − E = 1.3. Finding
out more complicated transformations using numeri-
cal methods, this estimate can be improved to 1.0;
however, in any case, this value is about 10% of the
energy of the inhomogeneity itself, which may indi-
cate a good stability of the states under study with
respect to thermal f luctuations.

4. EFFECT OF ELECTRIC CURRENT

Let us demonstrate that inhomogeneities with k =
±1 localized at two holes can be stable under the effect
of electric current f lowing across one of the holes.
Assume first that the magnitude of such a current is
extremely high, so that the contribution of exchange
interaction can be neglected. Then, at all points of the
sample, the magnetization vector is oriented along the
current-induced magnetic field lines, i.e., along tan-
gents to circles whose centers coincide with the center
of the hole. Thus, this hole will be characterized by a
topological charge of +1, and the second one will be
characterized by zero charge since the magnetization
near it will be nearly constant. However, a decrease in
the current is accompanied by an increase in the role
of the exchange interaction whose energy, as known,
decreases significantly when the total topological
charge of the system is zero. Nevertheless, the electric
current can still remain high enough to orient the mag-
netization near it along the magnetic field lines.
Therefore, the topological charge corresponding to
the first hole will retain its value of +1. Consequently,
for the second hole, the topological charge is forced to
become equal to −1 owing to the spontaneous redis-
tribution of magnetization. A further decrease in the
current will cause the formation of a magnetization
vortex around the first hole to become unfavorable,
and the topological charges will vanish for both holes.
Eventually, the magnetic material will transform to a
state close to the homogeneous one. Thus, we expect
that the state with topological charges +1 and −1 is
stable at electric currents in a certain range. At the
same currents, the state with charges −1 and +1 is also
stable, but the current should be passed across the sec-
ond hole.

Let us check our reasoning by a numerical experi-
ment. For this purpose, we supplement Eq. (4) by the
term

where  are the polar coordinates of the sites in
the reference system related to the point where the
electric current passes across the plane. We chose this
point at the center of one of the vacancies in the lat-
tice. By optimizing the energy obtained at different
values of the electric current I, we find three non-
equivalent distributions of magnetization, which are
shown in Fig. 3. In this case, all distributions corre-
spond to the global energy minimum, so that for a
given I value, these states are stable. However, the
states of a similar topology at other currents may be

− θ − ϕ= cos( ),I i i
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Fig. 4. Energies of different states under the effect of elec-
tric current.
metastable. The dependence of the energy E of each of
them on the current I is shown in Fig. 4. As expected,
the state with charges 0 and 0 is stable at I < 0.5, the
stable state for I > 2.6 corresponds to the charges +1
and 0, and a solitary inhomogeneity characterized by
charges of +1 and −1, which is of special interest, is
stabilized at intermediate values 0.5 < I < 2.6.

5. CASE OF FOUR HOLES

It is clear that all procedures discussed above are
applicable not only to the film with two antidots but
also to films with a larger number N of such antidots.
In this case, the relation similar to Eq. (2) should have
the form ; hence, the
condition  ensuring a finite value
of the energy of the system must be valid.

For example, consider the case of N = 4, placing
the holes of equal radius R at the vertices of a square
with the side a. By optimizing energy (4) for the corre-
sponding lattice of 180 spins, we obtain the distribu-
tions of magnetization shown in Fig. 5 (signs plus and
minus mark the holes having charges of +1 and −1,
respectively). The energies of these states are E1 = 10.6
(two holes are coupled along the horizontal or vertical

θ ϕ + ϕ + + ϕ…1 1 2 2= N Nk k k
+ + +…1 2 = 0Nk k k
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Fig. 5. Solitary inhomogene
directions), E2 = 13.5 (two holes are coupled along the
diagonal), and E3 = 15.9 (all four holes are coupled).

From the viewpoint of the continuous model, the
first two of the states obtained are described by Eq. (2)
at k = 1, which means that their energies can be calcu-
lated by Eq. (3). Assuming that the distance between
the centers of the holes for the second state is , we
obtain E1 = 4πAhln(a/R) and .
For the third state, it can be shown that E3 =

. It is easy to see that this energy can be
expressed in terms of the first two as E3 = 4E1 − 2E2.
This relation can be used as a test one to check the cor-
respondence between the continuous and discrete
models. Substituting the previously found values E1 =
10.6 and E2 = 13.5 into the above relation, we obtain
E3 = 15.4, which differs only by 3% from the calcu-
lated value.

Although the third of all inhomogeneities illus-
trated in Fig. 5 corresponds to the highest energy, it is
of most interest because this structure actually rep-
resents a bound state of two inhomogeneities of the
first type. This is confirmed by a nonzero binding
energy E3 − 2E1 = −4πAhln2 < 0; consequently, it is
particularly difficult to destroy such a state. To verify
this, let us again turn to the minimum work required to
transfer a discrete lattice of spins from a given state to
the homogeneous state. In this case, a “rough” esti-
mate using the transformation θi → (1 − t)θi gives
quite an overestimated value of 12.5. This estimate can
be improved down to 4.0, which is approximately 25%
of the energy of inhomogeneity and is larger than sim-
ilar work for the case of two holes by a factor of 4.
Thus, coupling of four holes at once is apparently eas-
ier for actual implementation because of a higher rela-
tive stability of the resulting inhomogeneity. At the
same time, its formation, as clear from Fig. 5 and from
the above analysis of the effect of electric current, can
be carried out by passing oppositely directed currents
of a certain magnitude across two holes lying at the
same diagonal of the square.

2a
π2 = 4 ln( 2/ )E Ah a R

π8 ln( / 2)Ah a R
ities localized at four holes.
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6. CONCLUSIONS

To summarize, we have shown that thin films with
topological features in the form of several holes can
form solitary magnetic inhomogeneities that are stable
under the effect of electric current and metastable in
its absence. In this case, however, even metastable
states can be sufficiently long-lived owing to a signifi-
cant energy barrier that should be overcome to destroy
an inhomogeneity. Moreover, this barrier becomes
finite only within the discrete model, the choice of
specific parameters of which remains arbitrary to a
certain extent. That is why, at the moment, it is impos-
sible to reliably estimate the temperatures at which the
described states can be observed in experiments. In
our opinion, this theoretical problem primarily
requires further study since the idea of stabilizing
inhomogeneous structures involving topological fac-
tors underlies not only our work but also all studies of
skyrmions. At the same time, topological consider-
ation is inapplicable to physical systems of a funda-
mentally discrete nature, to which, in part, belong
crystal lattices. The development of a consistent meth-
odology for estimating the reliability of the constraints
imposed by topology on the behavior of magnetic
structures would greatly simplify the transition from
theoretical predictions to their direct experimental
verification.

Nevertheless, we believe in actual realizability of
the heterogeneities described here. From a technical
point of view, their important feature is their localiza-
tion on a plane rather than in three-dimensional
space, which makes their implementation possible in
heterostructures with the thinnest layers. In addition,
each pair of holes can encode more than one bit since
the surrounding magnetic material exhibits either the
homogeneous state or one of two inhomogeneous
states that differ in the sign of the topological charge.
Thus, it is quite likely that the use of films with topo-
logical features is the key to increasing the density of
information recording, as well as to solving a number
of other problems associated with the development of
nanoelectronics.
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