Skip to main content
Log in

New Aspects of Enhancing the Graphene Capacitance by Defects in Aqueous Electrolytes and Ionic Liquids

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The influence of internal and external defects in graphene on the capacitance of the graphene/electrolyte interface was explored using Density Functional Theory (DFT) calculations. Aqueous solutions and ionic liquids were considered as electrolyte. The results indicate that in aqueous solutions the intrinsic defects, such as mono- and divacancies, enhance the integral capacitance more effectively than external ones, such as nitrogen impurity and oxygen functional groups, used in practice. On the other hand, the strategy of increasing the integral capacitance by creating defects in graphene is ineffective for ionic liquids with an electrochemical window larger than 2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. R. Miller and P. Simon, Electrochem. Soc. Interface 17, 31 (2008).

    Article  Google Scholar 

  2. P. Simon and Y. Gogotsi, Philos. Trans. R. Soc. London, Ser. A 368, 3457 (2010).

    Google Scholar 

  3. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, and P. Simon, J. Am. Chem. Soc. 130, 2730 (2008).

    Article  Google Scholar 

  4. L. L. Zhang, X. Zhao, and H. Ji, Energy Environ. Sci. 5, 9618 (2012).

    Article  Google Scholar 

  5. T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, Energy Environ. Sci. 6, 225 (2013).

    Article  Google Scholar 

  6. J. Xia, F. Chen, J. Li, and N. Tao, Nat. Nanotechnol. 4, 505 (2009).

    Article  ADS  Google Scholar 

  7. E. Paek, A. J. Pak, K. E. Kweon, and G. S. Hwang, J. Phys. Chem. C 117, 5610 (2013).

    Article  Google Scholar 

  8. C. Zhan, Y. Zhang, P. T. Cummings, and D. Jiang, Phys. Chem. Chem. Phys. 18, 4668 (2016).

    Article  Google Scholar 

  9. K. Gopalsamy, J. Balamurugan, T. D. Thanh, N. H. Kim, and J. H. Lee, Chem. Eng. J. 312, 180 (2017).

    Article  Google Scholar 

  10. Q. Xu, G. Yang, X. Fan, and W. Zheng, ACS Omega 4, 13209 (2019).

    Article  Google Scholar 

  11. Z. Song, H. Duan, L. Li, D. Zhu, T. Cao, Y. Lv, W. Xiong, Z. Wang, M. Liu, and L. Gan, Chem. Eng. J. 372, 1216 (2019).

    Article  Google Scholar 

  12. R. Liu, Y. Wang, and X. Wu, Microporous Mesoporous Mater. 295, 109954 (2020).

  13. V. Y. Aristov, A. N. Chaika, O. V. Molodtsova, I. M. Aristova, and D. V. Potorochin, JETP Lett. 113, 176 (2021).

    Article  ADS  Google Scholar 

  14. V. A. Kislenko, S. V. Pavlov, and S. A. Kislenko, Electrochim. Acta 341, 136011 (2020).

  15. S. V. Pavlov, V. A. Kislenko, and S. A. Kislenko, J. Phys. Chem. C 124, 18147 (2020).

    Article  Google Scholar 

  16. M. M. Ugeda, I. Brihuega, F. Guinea, and J. M. Gómez-Rodríguez, Phys. Rev. Lett. 104, 96804 (2010).

    Article  ADS  Google Scholar 

  17. V. A. Demin, D. G. Kvashnin, P. Vancsó, G. I. Márk, and L. A. Chernozatonskii, JETP Lett. 112, 305 (2020).

    Article  ADS  Google Scholar 

  18. D. A. C. da Silva, A. J. P. Neto, A. M. Pascon, E. E. Fileti, L. R. C. Fonseca, and H. G. Zanin, Phys. Chem. Chem. Phys. 22, 3906 (2020).

    Article  Google Scholar 

  19. Q. Zhou, W. Ju, Y. Liu, J. Li, and Q. Zhang, Appl. Surf. Sci. 510, 145448 (2020).

  20. I. Heller, J. Kong, K. A. Williams, C. Dekker, and S. G. Lemay, J. Am. Chem. Soc. 128, 7353 (2006).

    Article  Google Scholar 

  21. C. Zhan, J. Neal, J. Wu, and D. Jiang, J. Phys. Chem. C 119, 22297 (2015).

    Article  Google Scholar 

  22. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).

    Article  Google Scholar 

  23. A. Lewandowski, A. Olejniczak, M. Galinski, and I. Stepniak, J. Power Sources 195, 5814 (2010).

    Article  ADS  Google Scholar 

  24. M. V. Fedorov and A. A. Kornyshev, Chem. Rev. 114, 2978 (2014).

    Article  Google Scholar 

  25. N. Georgi, A. A. Kornyshev, and M. V. Fedorov, J. Electroanal. Chem. 649, 261 (2010).

    Article  Google Scholar 

  26. V. Ivaništšev, K. Kirchner, T. Kirchner, and M. V. Fedorov, J. Phys.: Condens. Matter 27, 102101 (2015).

  27. A. J. Pak, E. Paek, and G. S. Hwang, Phys. Chem. Chem. Phys. 15, 19741 (2013).

    Article  Google Scholar 

  28. E. Paek, A. J. Pak, and G. S. Hwang, J. Electrochem. Soc. 160, A1 (2012).

    Article  Google Scholar 

  29. E. Uesugi, H. Goto, R. Eguchi, A. Fujiwara, and Y. Kubozono, Sci. Rep. 3, 1 (2013).

    Article  Google Scholar 

  30. H. Ers, M. Lembinen, M. Misin, A. P. Seitsonen, M. V. Fedorov, and V. B. Ivaništšev, J. Phys. Chem. C 124, 19548 (2020).

    Article  Google Scholar 

  31. K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Comput. Mater. Sci. 81, 446 (2014).

    Article  Google Scholar 

  32. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

  33. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  34. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

  35. H. Maeda, M. Itami, Y. Yamauchi, and H. Ohmori, Chem. Pharm. Bull. 44, 2294 (1996).

    Article  Google Scholar 

  36. M. S. Islam, S. Lamperski, M. M. Islam, D. Henderson, and L. B. Bhuiyan, J. Chem. Phys. 152, 204702 (2020).

  37. V. Lockett, R. Sedev, S. Harmer, J. Ralston, M. Horne, and T. Rodopoulos, Phys. Chem. Chem. Phys. 12, 13816 (2010).

    Article  Google Scholar 

  38. F. Silva, C. Gomes, M. Figueiredo, R. Costa, A. Martins, and C. M. Pereira, J. Electroanal. Chem. 622, 153 (2008).

    Article  Google Scholar 

  39. M. T. Alam, M. M. Islam, T. Okajima, and T. Ohsaka, J. Phys. Chem. C 112, 16600 (2008).

    Article  Google Scholar 

  40. J. Chen, Y. Han, X. Kong, X. Deng, H. J. Park, Y. Guo, S. Jin, Z. Qi, Z. Lee, Z. Qiao, R. S. Ruoff, and H. Ji, Angew. Chem. Int. 55, 13822 (2016).

    Article  Google Scholar 

  41. J.-Y. Hwang, C.-C. Kuo, L.-C. Chen, and K.‑H. Chen, Nanotechnology 21, 465705 (2010).

  42. A. Lherbier, S.M.-M. Dubois, X. Declerck, S. Roche, Y.-M. Niquet, and J.-C. Charlier, Phys. Rev. Lett. 106, 46803 (2011).

    Article  ADS  Google Scholar 

  43. J.-H. Zhong, J. Zhang, X. Jin, J.-Y. Liu, Q. Li, M.‑H. Li, W. Cai, D.-Y. Wu, D. Zhan, and B. Ren, J. Am. Chem. Soc. 136, 16609 (2014).

    Article  Google Scholar 

  44. S. H. M. Jafri, K. Carva, E. Widenkvist, T. Blom, B. Sanyal, J. Fransson, O. Eriksson, U. Jansson, H. Grennberg, O. Karis, R. A. Quinlan, B. C. Holloway, and K. Leifer, J. Phys. D: Appl. Phys. 43, 45404 (2010).

    Article  Google Scholar 

  45. I. Zacharov, R. Arslanov, M. Gunin, D. Stefonishin, A. Bykov, S. Pavlov, O. Panarin, A. Maliutin, S. Rykovanov, and M. Fedorov, Open Eng. 9, 512 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the Skoltech CDISE supercomputer Zhores [45] and supercomputers at Joint Supercomputer Center, Russian Academy of Sciences (JSCC RAS).

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (theme no. AAAA-A19-119022190058-2, state assignment for the Joint Institute for High Temperatures, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Kislenko or S. A. Kislenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislenko, V.A., Pavlov, S.V., Fedorov, M.V. et al. New Aspects of Enhancing the Graphene Capacitance by Defects in Aqueous Electrolytes and Ionic Liquids. Jetp Lett. 114, 263–268 (2021). https://doi.org/10.1134/S0021364021170021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021170021

Navigation