Skip to main content
Log in

Spin Relaxation in Single-Ion Magnets under the Slowing Down Effect Produced by the Stray Field of Ferromagnetic Microparticles

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The quantum tunneling of magnetization accelerates magnetic relaxation in transition and rare-earth ion complexes and often leads to the degradation of the characteristics of single-molecule or single-ion magnets. On the other hand, the applied dc magnetic field slows down the quantum tunneling of magnetization and favors other channels of spin relaxation. In this work, the stray magnetic field related to ferromagnetic microparticles occurring in the SIM composite with PrDyFeCoB microparticles is proposed instead of the applied field. The adjustable remanent magnetization of microparticles makes it possible to control the required stray field, which can be used to tune the spin relaxation rate in the complexes surrounding the microparticles. In this case, a slow spin relaxation is observed at zero applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Mitsuhashi, K. S. Pedersen, T. Ueda, T. Suzuki, J. Bendix, and M. Mikuriya, Chem. Commun. 54, 8869 (2018). https://doi.org/10.1039/C8CC04756A

    Article  Google Scholar 

  2. M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M. Arrio, A. Cornia, D. Gatteschi, and R. Sessoli, Nat. Mater. 8, 194 (2009). https://doi.org/10.1038/nmat2374

    Article  ADS  Google Scholar 

  3. M. Leuenberger and D. Loss, Nature (London, U.K.) 410, 789 (2001). https://doi.org/10.1038/35071024

    Article  ADS  Google Scholar 

  4. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature (London, U.K.) 365, 141 (1993). https://doi.org/10.1038/365141a0

    Article  ADS  Google Scholar 

  5. Y. S. Meng, S. D. Jiang, B. W. Wang, and S. Gao, Acc. Chem. Res. 49, 2381 (2016). https://doi.org/10.1021/acs.accounts.6b00222

    Article  Google Scholar 

  6. G. A. Craig and M. Murrie, Chem. Soc. Rev. 44, 2135 (2015). https://doi.org/10.1039/C4CS00439F

    Article  Google Scholar 

  7. Y. P. Tupolova, I. N. Shcherbakov, L. D. Popov, V. E. Lebedev, V. V. Tkachev, K. V. Zakharov, A. N. Vasiliev, D. V. Korchagin, A. V. Palii, and S. M. Aldoshin, Dalton Trans. 48, 6960 (2019). https://doi.org/10.1039/C9DT00770A

    Article  Google Scholar 

  8. E. N. Kablov, O. G. Ospennikova, V. P. Piskorskii, E. I. Kunitsyna, A. D. Talantsev, and R. B. Morgunov, IEEE Trans. Magn. 52, 2102012 (2016). https://doi.org/10.1134/S1063783416060184

  9. P. Mendoza Zélis, V. Vega, V. M. Prida, L. C. Costa-Arzuza, F. Beron, K. R. Pirota, R. López-Ruiz, and F. H. Sánchez, Phys. Rev. B 96, 174427 (2017). https://doi.org/10.1103/PhysRevB.96.174427

  10. F. H. Sánchez, P. Mendoza Zelis, M. L. Arciniegas, G. A. Pasquevich, and M. B. Fernández van Raap, Phys. Rev. B 95, 134421 (2017). https://doi.org/10.1103/PhysRevB.95.134421

  11. B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, E. Z. Meilikhov, V. V. Ryl’kov, M. V. Sedova, N. Negre, M. Goiran, and J. Leotin, JETP Lett. 70, 90 (1999).

    Article  ADS  Google Scholar 

  12. Yu. O. Mikhailovsky, D. E. Mettus, A. P. Kazakov, V. N. Prudnikov, Yu. E. Kalinin, A. S. Sitnikov, A. Gerber, D. Bartov, and A. B. Granovsky, JETP Lett. 97, 473 (2013).

    Article  ADS  Google Scholar 

  13. B. A. Aronzon, A. B. Granovski, D. Yu. Kovalev, E. Z. Meilikhov, V. V. Ryl’kov, and M. A. Sedova, JETP Lett. 71, 469 (2000).

    Article  ADS  Google Scholar 

  14. M. A. Kozhushner and L. I. Trakhtenberg, J. Exp. T-heor. Phys. 111, 1010 (2010).

    Article  ADS  Google Scholar 

  15. A. S. Borukhovich, N. I. Ignat’eva, A. I. Galyas, S. S. Dorofeichik, and K. I. Yanushkevich, JETP Lett. 84, 502 (2006).

    Article  ADS  Google Scholar 

  16. K. E. Nikiruy, A. V. Emelyanov, V. V. Rylkov, A. V. Sitnikov, and V. A. Demin, Tech. Phys. Lett. 45, 386 (2019).

    Article  ADS  Google Scholar 

  17. V. V. Rylkov, A. V. Emelyanov, S. N. Nikolaev, K. E. Nikiruy, A. V. Sitnikov, E. A. Fadeev, V. A. Demin, and A. B. Granovsky, J. Exp. Theor. Phys. 131, 160 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.M. Aldoshin and D.V. Korchagin for fruitful discussions and to I.N. Shcherbakov and Yu.P. Tupolova for placing the sample of Co complex at our disposal.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-33-90256) and the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. NSh-2644.2020.2) and was performed within the framework of the thematical roadmap no. АААА-А19-119092390079-8 of the Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Koplak.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koplak, O.V., Dvoretskaya, E.V., Kunitsyna, E.I. et al. Spin Relaxation in Single-Ion Magnets under the Slowing Down Effect Produced by the Stray Field of Ferromagnetic Microparticles. Jetp Lett. 113, 794–800 (2021). https://doi.org/10.1134/S0021364021120080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021120080

Navigation