Skip to main content
Log in

Interlayer Heat Conductivity and Thermal Stability of Distorted Bilayer Graphene

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The nonorthogonal tight-binding potential is augmented by long-range terms needed for a correct description of the interlayer interaction in bilayer graphene. The molecular dynamics method is used to study the heat transfer between two distorted graphene layers, one of which is initially cooled down to 0 K, and the second one is heated up to 77−7000 K. The characteristic time of the heat transfer depending on the initial temperature of the heated layer and the distortion of the layers is determined. It is demonstrated that both factors significantly affect the intensity of interlayer heat transfer. It is found that, during the characteristic time of temperature equalization, thermally induced defects of various types, including melting, separation of the layers, and tangential shear of the heated layer, can appear in the system. It is shown that the formation of thermally induced defects can result in more than an order of magnitude increase in the rate of interlayer heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science (Washington, DC, U. S.) 313, 951 (2006).

    Article  ADS  Google Scholar 

  2. Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London, U.K.) 459, 820 (2009).

    Article  ADS  Google Scholar 

  3. G. Fiori and G. Iannaccone, IEEE Electron Dev. Lett. 30, 261 (2009).

    Article  ADS  Google Scholar 

  4. M.-C. Chen, C.-L. Hsu, and T.-J. Hsueh, IEEE Electron Dev. Lett. 35, 590 (2014).

    Article  ADS  Google Scholar 

  5. Y. Tang, Z. Liu, Z. Shen, W. Chen, D. Ma, and X. Dai, Sens. Actuators, B 238, 182 (2017).

    Article  Google Scholar 

  6. Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda, K. Watanabe, T. Taniguchi, T. Senthi, and P. Jarillo-Herrero, Phys. Rev. Lett. 124, 076801 (2020).

    Article  ADS  Google Scholar 

  7. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London, U.K.) 556, 43 (2018).

    Article  ADS  Google Scholar 

  8. Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. 15, 1174 (2019).

    Article  Google Scholar 

  9. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008).

    Article  ADS  Google Scholar 

  10. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).

    Article  ADS  Google Scholar 

  11. K. S. Grishakov, K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Appl. Surf. Sci. 463, 1051 (2019).

    Article  ADS  Google Scholar 

  12. B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, and Z. Liu, ACS Nano 5, 5957 (2011).

    Article  Google Scholar 

  13. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U.S.) 323, 610 (2009).

    Article  ADS  Google Scholar 

  14. J. A. Baimova, S. V. Dmitriev, K. Zhou, and A. V. Savin, Phys. Rev. B 86, 035427 (2012).

    Article  ADS  Google Scholar 

  15. S. V. Dmitriev, J. A. Baimova, A. V. Savin, and Y. S. Kivshar, Comput. Mater. Sci. 53, 194 (2012).

    Article  Google Scholar 

  16. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  17. K. P. Katin, K. S. Grishakov, A. I. Podlivaev, and M. M. Maslov, J. Chem. Theory Comput. 16, 2065 (2020).

    Article  Google Scholar 

  18. K. P. Katin and M. M. Maslov, Phys. Chem. Solids 108, 82 (2017).

    Article  ADS  Google Scholar 

  19. K. P. Katin, S. A. Shostachenko, A. I. Avhadieva, and M. M. Maslov, Adv. Chem. Phys. 2015, 506894 (2015).

    Article  Google Scholar 

  20. A. I. Podlivaev and L. A. Openov, Phys. Solid State 60, 162 (2018).

    Article  ADS  Google Scholar 

  21. L. A. Openov and A. I. Podlivaev, Phys. Solid State 60, 799 (2018).

    Article  ADS  Google Scholar 

  22. L. A. Openov and A. I. Podlivaev, JETP Lett. 109, 710 (2019).

    Article  ADS  Google Scholar 

  23. L. A. Openov and A. I. Podlivaev, Semiconductors 53, 717 (2019).

    Article  ADS  Google Scholar 

  24. I. Yu. Dolinskii, K. P. Katin, K. S. Grishakov, V. S. Prudkovskii, N. I. Kargin, and M. M. Maslov, Phys. Solid State 60, 821 (2018).

    Article  ADS  Google Scholar 

  25. I. V. Lebedova, A. A. Knizhnik, A. M. Popov, Y. E. Lozovik, and B. V. Potapkin, Phys. Chem. Chem. Phys. 13, 5687 (2011).

    Article  Google Scholar 

  26. S. D. Chakarova-Käck, A. Vojvodic, J. Kleis, P. Hyldgaard, and E. Schröder, New J. Phys. 12, 013017 (2010).

    Article  ADS  Google Scholar 

  27. R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982).

    Article  ADS  Google Scholar 

  28. E. Mostaani and N. D. Drummond, Phys. Rev. Lett. 115, 115501 (2015).

    Article  ADS  Google Scholar 

  29. N. A. Abdullaev, Phys. Solid State 48, 663 (2006).

    Article  ADS  Google Scholar 

  30. A. I. Podlivaev, JETP Lett. 111, 613 (2020).

    Article  ADS  Google Scholar 

  31. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A 32, 3030 (1985).

    Article  ADS  Google Scholar 

  32. E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Phys. Rev. Lett. 102, 235502 (2009).

    Article  ADS  Google Scholar 

  33. C. Lee, X. Wei, W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008).

    Article  ADS  Google Scholar 

  34. G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B 88, 045430 (2013).

    Article  ADS  Google Scholar 

  35. F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, Heidelberg, 2007), p. 64.

    Book  Google Scholar 

  36. F. Colonna, J. H. Los, A. Fasolino, and E. J. Meijer, Phys. Rev. B 80, 134103 (2009).

    Article  ADS  Google Scholar 

  37. K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys.: Condens. Matter 23, 202202 (2011).

    ADS  Google Scholar 

  38. J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 91, 045415 (2015).

    Article  ADS  Google Scholar 

  39. L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 847 (2016).

    Article  ADS  Google Scholar 

  40. L. A. Chernozatonskii, V. A. Demin, and Ph. Lambin, Phys. Chem. Chem. Phys. 18, 27432 (2016).

    Article  Google Scholar 

  41. H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, and J. Zhong, Phys. Rev. B 99, 041405 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. MK-722.2020.2) and by the Ministry of Science and Higher Education of the Russian Federation (Program of Excellence for the National Research Nuclear University MEPhI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Grishakov, K.S., Katin, K.P. et al. Interlayer Heat Conductivity and Thermal Stability of Distorted Bilayer Graphene. Jetp Lett. 113, 169–175 (2021). https://doi.org/10.1134/S0021364021030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021030085

Navigation