Skip to main content
Log in

Distribution of Phases and Short-Range Order Distortion in SmS@Y2O2S and Y2O2S@SmS Core–Shell Nanostructures

  • Published:
Inorganic Materials Aims and scope

Abstract—

We report the preparation of SmS@Y2O2S and Y2O2S@SmS ceramics with a core–shell nanostructure via 1123-K sulfidation of rare-earth oxides prepared by the sol–gel method, involving precipitation from starting metal nitrate solutions with NH4OH as a precipitant, followed by annealing of the resultant sulfide phases in an induction furnace at 1473 K. Using X-ray diffraction and scanning electron microscopy data, we have evaluated the average crystallite size in the materials and examined the morphology of the constituent phases in them. In addition, the short-range order in the coexisting nanostructures has been analyzed in detail using Raman spectroscopy and X-ray photoelectron spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Pourkiaei, S.M., Ahmadi, M.H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Yazdi, M.A.-P., and Kumar, R., Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials, Energy, 2019, vol. 186, p. 115849. https://doi.org/10.1016/j.energy.2019.07.179

    Article  Google Scholar 

  2. Cao, Q., Luan, W., and Wang, T., Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery, Appl. Therm. Eng., 2017, vol. 130, pp. 1472–1479. https://doi.org/10.1016/j.applthermaleng.2017.09.134

    Article  Google Scholar 

  3. Alsalama, M.M., Hamoudi, H., Abdala, A., Ghouri, Z.K., and Youssef, K.M., Enhancement of thermoelectric properties of layered chalcogenide materials, Rev. Adv. Mater. Sci., 2020, vol. 59, pp. 371–398. https://doi.org/10.1515/rams-2020-0023

    Article  CAS  Google Scholar 

  4. Snyder, G.J., Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators, Appl. Phys. Lett., 2004, vol. 84, pp. 2436–2438. https://doi.org/10.1063/1.1689396

    Article  CAS  Google Scholar 

  5. Zhu, T., He, R., Gong, S., Xie, T., Gorai, P., Nielsch, K., and Grossman, J.C., Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics, Energy Environ. Sci, 2021, vol. 14, pp. 3559–3566. https://doi.org/10.1039/D1EE00442E

    Article  CAS  Google Scholar 

  6. Sotnikov, A.V., Jood, P., and Ohta, M., Enhancing the thermoelectric properties of misfit layered sulfides (MS)1.2 + q(NbS2)n (M = Gd and Dy) through structural evolution and compositional tuning, ACS Omega, 2020, vol. 5, pp. 13006–13013. https://doi.org/10.1021/acsomega.0c00908

    Article  CAS  Google Scholar 

  7. Sotnikov, A.V., Bakovets, V.V., Korotaev, E.V., Trubina, S.V., and Zaikovskii, V.I., Short- and long-range disorders in misfit layered compounds (MS)1.2 + qNbS2 with the solid solution subsystem (MS) = (GdxDy1 – xS), Mater. Res. Bull., 2020, vol. 131, p. 110963. https://doi.org/10.1016/j.materresbull.2020.110963

    Article  CAS  Google Scholar 

  8. Sotnikov, A.V., Bakovets, V.V., Agazhanov, A.Sh., Stankus, S.V., Pishchur, D.P., and Sokolov, V.V., Influence of morphological defects on thermophysical properties of γ-Gd2S3, Phys. Solid State, 2018, vol. 60, no. 3, pp. 487–493. https://doi.org/10.1134/S1063783418030290

    Article  CAS  Google Scholar 

  9. Syrokvashin, M.M., Korotaev, E.V., Kryuchkova, N.A., Zvereva, V.V., Filatova, I.Yu., and Kalinkin, A.V., Surface and bulk charge distribution in manganese sulfide doped with lanthanide ions, Appl. Surf. Sci., 2019, vol. 492, pp. 209–218. https://doi.org/10.1016/j.apsusc.2019.05.237

    Article  CAS  Google Scholar 

  10. Sotnikov, A.V., Bakovets, V.V., Ohta, M., Agazhanov, A.Sh., and Stankus, S.V., Morphology and the thermoelectric properties of γ-GdxDy1–xS1.5–y solid solution ceramics, Phys. Solid State, 2020, vol. 62, no. 44, pp. 611–620. https://doi.org/10.1134/S1063783420040216

    Article  CAS  Google Scholar 

  11. Sotnikov, A.V., Syrokvashin, M.M., Bakovets, V.V., Filatova, I.Yu., Korotaev, E.V., Agazhanov, A.Sh., and Samoshkin, D.A., Figure of merit enhancement in thermoelectric materials based on γ-Ln0.8Yb0.2S1.5 – y (Ln = Gd, Dy) solid solutions, J. Am. Ceram. Soc., 2021, vol. 105, pp. 2813–2822. https://doi.org/10.1111/jace.18292

    Article  CAS  Google Scholar 

  12. Snyder, G.J. and Toberer, E.S., Complex thermoelectric materials, Nat. Mater., 2008, vol. 7, pp. 105–114. https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  13. Sotnikov, A.V., Bakovets, V.V., and Plyusnin, P.E., Kinetics of thermal decomposition of yttrium and samarium hydroxides and Sm(OH)3@Y(OH)3 compound with a core–shell nanostructure, Russ. J. Gen. Chem., 2021, vol. 91, no. 7, pp. 1368–1378. https://doi.org/10.1134/S107036322107015X

    Article  CAS  Google Scholar 

  14. Rowe, D.M., CRC Handbook of Thermoelectrics, Boca Raton: CRC, 1995.

    Google Scholar 

  15. Golubkov, A.V., Kazanii, M.M., Kaminskii, V.V., Sokolov, V.V., Solov’ev, S.M., and Trushnikova L.N., Thermoelectric properties of SmSx (x = 0.8–1.5), Inorg. Mater., 2003, vol. 39, no. 12, pp. 1251–1257. https://doi.org/10.1023/B:INMA.0000008909.13771.f3

    Article  CAS  Google Scholar 

  16. Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, vol. 56, p. 978. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  17. Kolesov, B.A., Kamarzin, A.A., and Sokolov, V.V., Raman spectra and structure of γ-Ln2S3 vacancy crystals, J. Struct. Chem., 1997, vol. 38, no. 4, pp. 544–549. https://doi.org/10.1007/BF02762735

    Article  CAS  Google Scholar 

  18. Kolesov, B.A. and Vasil’eva, I.G., Raman spectra and structural features of the rare earth disulfides, J. Struct. Chem., 1992, vol. 33 P, pp. 60–65. https://doi.org/10.1007/BF00746930

  19. Knight, D.S. and White, W.B., Raman spectroscopic study of the rare earth sesquisulfides, Spectrochim. Acta, 1990, vol. 46, pp. 381–387. https://doi.org/10.1016/0584-8539(90)80109-C

    Article  Google Scholar 

  20. Yuan, G., Li, M., Yu, M., Tian, C., Wang, G., and Fu, H., In situ synthesis, enhanced luminescence and application in dye sensitized solar cells of Y2O3/Y2O2S:Eu3+ nanocomposites by reduction of Y2O3:Eu3+, Sci. Rep., 2016, vol. 6, p. 37133. https://doi.org/10.1038/srep37133

    Article  CAS  Google Scholar 

  21. NIST Standard Reference Database 20, Version 4.1, n.d.

  22. Rajumon, M.K., Prabhakaran, K., and Rao, C.N.R., Adsorption of oxygen on (100), (110) and (111) surfaces of Ag, Cu and Ni: an electron spectroscopic study, Surf. Sci. Lett., 1990, vol. 233, pp. 237–242. https://doi.org/10.1016/0039-6028(90)90169-9

    Article  Google Scholar 

  23. Dolo, J.J., Dejene, F.B., and Swart, H.C., Characterization and XPS information of commercial Y2O2S:Eu3+ powder phosphor, 57th Ann. Conf. of the SAIP, 2012, p. 46–51. https://doi.org/10.1016/S0254-0584(02)00097-4

  24. Mariscal-Becerra, L., Vazquez-Arreguin, R., Balderas, U., Carmona-Tellez, S., Sanchez, H.M., and Falcony, C., Luminescent characteristics of layered yttrium oxide nano-phosphors doped with europium, J. Appl. Phys., 2017, vol. 121, p. 125111. https://doi.org/10.1063/1.4979209

    Article  CAS  Google Scholar 

  25. Mai, L., Boysen, N., Subasi, E., Arcos, T., Rogalla, D., Grundmeier, G., Bock, C., Lu, H.-L., and Devi, A., Water assisted atomic layer deposition of yttrium oxide using tris(N,N'-diisopropyl-2-dimethylamido-guanidinato) yttrium(III): process development, film characterization and functional properties, RSC Adv., 2018, vol. 8, p. 4987. https://doi.org/10.1039/C7RA13417G

    Article  CAS  Google Scholar 

  26. Basavegowda, N., Mishra, K., Thombal, R.S., Kaliraj, K., and Lee, Y.R., Sonochemical green synthesis of yttrium oxide (Y2O3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1,3-thiazolidin-4-ones, Catal. Lett., 2017, vol. 147, pp. 2630–2639. https://doi.org/10.1007/s10562-017-2168-4

    Article  CAS  Google Scholar 

  27. Bakovets, V.V., Sotnikov, A.V., and Korolkov, I.V., Kinetics of phase formation in the Ln–O–S (Ln = La, Gd, Y) systems during oxide sulfidation in ammonium thiocyanate vapor, J. Am. Ceram. Soc., 2017, vol. 100, pp. 1320–1329. https://doi.org/10.1111/jace.14692

    Article  CAS  Google Scholar 

  28. Reiche, R., Thielsch, R., Oswald, S., and Wetzig, K., XPS studies and factor analysis of PbS nanocrystal-doped SiO2 thin film, J. Electron Spectrosc. Relat. Phenom., 1999, vol. 104, pp. 161–171. https://doi.org/10.1016/S0368-2048(98)00326-0

    Article  CAS  Google Scholar 

  29. Anupriya, J., Rajakumaran, R., Chen, S.M., and Senthilkumar, T., Samarium tungstate anchored on graphitic carbon nitride composite: a novel electrocatalyst for the ultra-selective electrocatalytic detection of 8-hydroxy-5-nitroquinoline in river water and biological samples, Colloids Surf., A, 2022, vol. 632, p. 127820. https://doi.org/10.1016/j.colsurfa.2021.127820

    Article  CAS  Google Scholar 

  30. Brunckova, H., Kanuchova, M., Kolev, H., Mudra, E., and Medvecky, L., XPS characterization of SmNbO4 and SmTaO4 precursors prepared by sol–gel method, Appl. Surf. Sci., 2018, vol. 473, pp. 1–5. https://doi.org/10.1016/j.apsusc.2018.12.143

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to T.D. Pivovarova for her assistance in the synthesis of samarium and yttrium hydroxides and to B.A. Kolesov for his assistance in interpreting the results.

Funding

This work was supported by the Russian Federation President’s Grants Council, research project no. MK-3688.2021.1.3.

We gratefully acknowledge the support from the Russian Federation Ministry of Science and Higher Education, project no. 121031700315-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sotnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, A.V., Bakovets, V.V., Syrokvashin, M.M. et al. Distribution of Phases and Short-Range Order Distortion in SmS@Y2O2S and Y2O2S@SmS Core–Shell Nanostructures. Inorg Mater 58, 1105–1113 (2022). https://doi.org/10.1134/S0020168522100132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522100132

Keywords:

Navigation