Skip to main content
Log in

Spinodal Decomposition in the Chemistry and Technology of Inorganic Materials

  • Published:
Inorganic Materials Aims and scope

Abstract

Spinodal decomposition is of great practical interest because it allows to obtain a finely dispersed microstructure, which in many cases makes it possible to significantly improve physical properties of materials. In particular, in modern chemistry of materials for the fabrication of multilayer thin-film systems, which are basic to most electrical, optical, biomedical, sensing, and many other functional devices, increasingly wide use is being made of self-organization through special thermodynamic conditions without resorting to complex or energy-consuming techniques. This review presents existing theories, experimental approaches and technologies of thin-film materials using analysis of the literature over the past 60 years with examples of decomposition of solid solutions in ceramics and glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Allen, S.M., Spinodal decomposition, in Encyclopedia of Materials: Science and Technology, Amsterdam: Elsevier, 2001, pp. 8761–8764. https://doi.org/10.1016/B0-08-043152-6/01569-2

  2. Seredin, P.V., Spinodal decomposition in epitaxial solid solutions of AlxGa1–xAs/GaAs(100) and GaxIn1–xP/ GaAs(100) heterostructures, Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk, 2009, vol. 11, no. 3, pp. 46–52.

    Google Scholar 

  3. Alfimova, D.L., Lunin, L.S., Lunina, M.L., et al., Synthesis and properties of InxAlyGa1 – x yPzAs1 – z/GaAs heterostructures, Inorg. Mater., 2017, vol. 53, no. 12, pp. 1217–1227. https://doi.org/10.1134/S0020168517120019

    Article  CAS  Google Scholar 

  4. Zheng, H., Straub, F., Zhan, Q., et al., Self-assembled growth of BiFeO3–CoFe2O4 nanostructures, Adv. Mater., 2006, vol. 18, no. 20, pp. 2747–2752. https://doi.org/10.1002/adma.200601215

    Article  CAS  Google Scholar 

  5. Meng, X., Wang, Z., Qian, W., et al., Excess cesium iodide induces spinodal decomposition of CsPbI2Br perovskite films, J. Phys. Chem. Lett., 2019, vol. 10, no. 2, pp. 194–199. https://doi.org/10.1021/acs.jpclett.8b03742

    Article  CAS  PubMed  Google Scholar 

  6. Choi, Y.H., Suppressing spinodal decomposition by incorporation of reduced graphene oxide into (Sn0.5Ti0.5)O2 solid solution, Mater. Res. Express, 2020, vol. 7, no. 3, paper 036506. https://doi.org/10.1088/2053-1591/ab7c23

  7. Hiroi, Z., Hayamizu, H., Yoshida, T., et al., Spinodal decomposition in the TiO2–VO2 system, Chem. Mater., 2013, vol. 25, no. 11, pp. 2202–2210. https://doi.org/10.1021/cm400236p

    Article  CAS  Google Scholar 

  8. Skripov, V.P. and Skripov, A.V., Spinodal decomposition (phase transition involving unstable states), Usp. Fiz. Nauk, 1979, vol. 128, no. 2, pp. 193–231.

    Article  CAS  Google Scholar 

  9. Novikov I.I. Teoriya termicheskoi obrabotki metallov (Theory of Heat Treatment of Metals), Moscow: Metallurgiya, 1986.

  10. Porter, D.A., Easterling, K.E., and Easterling, K.E., Phase Transformations in Metals and Alloys (Revised Reprint), 2009. https://doi.org/10.1201/9781439883570

  11. Cahn, J.W., On spinodal decomposition, Acta Metall., 1961, vol. 9, no. 9, pp. 795–801. https://doi.org/10.1016/0001-6160(61)90182-1

    Article  CAS  Google Scholar 

  12. Cahn, J.W., On spinodal decomposition in cubic crystals, Acta Metall., 1962, vol. 10, no. 3, pp. 179–183. https://doi.org/10.1016/0001-6160(62)90114-1

    Article  CAS  Google Scholar 

  13. Cahn, J.W., Phase separation by spinodal decomposition in isotropic systems, J. Chem. Phys., 1965, vol. 42, no. 1, pp. 93–99. https://doi.org/10.1063/1.1695731

    Article  CAS  Google Scholar 

  14. Cahn, J.W., Free energy of a nonuniform system: II. Thermodynamic basis, J. Chem. Phys., 1959, vol. 30, no. 5, pp. 1121–1124. https://doi.org/10.1063/1.1730145

    Article  CAS  Google Scholar 

  15. Cahn, J.W. and Hilliard, J.E., Free energy of a nonuniform system: I. Interfacial free energy, J. Chem. Phys., 1958, vol. 28, no. 2, pp. 258–267. https://doi.org/10.1063/1.1744102

    Article  CAS  Google Scholar 

  16. Colli, P., Gilardi, G., and Sprekels, J., Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 2012, vol. 80, pp. 119–149. https://doi.org/10.1007/s00032-012-0181-z

    Article  Google Scholar 

  17. Anders, D., Hesch, C., and Weinberg, K., Computational modeling of phase separation and coarsening in solder alloys, Int. J. Solids Struct., 2012, vol. 49, no. 13, pp. 1557–1572. https://doi.org/10.1016/j.ijsolstr.2012.03.018

    Article  CAS  Google Scholar 

  18. Park, J.M., Mauri, R., and Anderson, P.D., Phase separation of viscous ternary liquid mixtures, Chem. Eng. Sci., 2012, vol. 80, pp. 270–278. https://doi.org/10.1016/j.ces.2012.06.017

    Article  CAS  Google Scholar 

  19. Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 2002, vol. 31, no. 1, pp. 41–68. https://doi.org/10.1016/S0045-7930(00)00031-1

    Article  Google Scholar 

  20. Khatavkar, V.V., Anderson, P.D., and Meijer, H.E.H., On scaling of diffuse-interface models, Chem. Eng. Sci., 2006, vol. 61, no. 8, pp. 2364–2378. https://doi.org/10.1016/j.ces.2005.10.035

    Article  CAS  Google Scholar 

  21. Kim, J., A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys., 2005, vol. 204, no. 2, pp. 784–804. https://doi.org/10.1016/j.jcp.2004.10.032

    Article  Google Scholar 

  22. Kim, J., Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 2012, vol. 12, no. 3, pp. 613–661. https://doi.org/10.4208/cicp.301110.040811a

    Article  Google Scholar 

  23. Ganapathy, H., Al-Hajri, E., and Ohadi, M.M., Phase field modeling of Taylor flow in mini/microchannels. Part II: Hydrodynamics of Taylor flow, Chem. Eng. Sci., 2013, vol. 94, pp. 156–165. https://doi.org/10.1016/j.ces.2013.01.048

    Article  CAS  Google Scholar 

  24. Molin, D. and Mauri, R., Spinodal decomposition of binary mixtures with composition-dependent heat conductivities, Chem. Eng. Sci., 2008, vol. 63, no. 9, pp. 2402–2407. https://doi.org/10.1016/j.ces.2008.01.028

    Article  CAS  Google Scholar 

  25. Duc, V.N.T. and Chan, P.K., Using the Cahn–Hilliard theory in metastable binary solutions, ChemEngineering, 2019, vol. 3, no. 3, paper 75. https://doi.org/10.3390/chemengineering3030075

  26. Chen, L.Q., Phase-field models for microstructure evolution, Ann. Rev. Mater. Sci., 2002, vol. 32, pp. 113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041

    Article  CAS  Google Scholar 

  27. Hu, S.Y. and Chen, L.Q., A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater., 2001, vol. 49, no. 11, pp. 1879–1890. https://doi.org/10.1016/S1359-6454(01)00118-5

    Article  CAS  Google Scholar 

  28. Marra, F., De Marco, I., and Reverchon, E., Numerical analysis of the characteristic times controlling supercritical antisolvent micronization, Chem. Eng. Sci., 2012, vol. 71, pp. 39–45. https://doi.org/10.1016/j.ces.2011.12.019

    Article  CAS  Google Scholar 

  29. Cristini, V., Li, X., Lowengrub, J.S., et al., Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching, J. Math. Biol., 2009, vol. 58, nos. 4–5, paper 723. https://doi.org/10.1007/s00285-008-0215-x

  30. Wise, S.M., Lowengrub, J.S., Frieboes, H.B., et al., Three-dimensional multispecies nonlinear tumor growth–I. Model and numerical method, J. Theor. Biol., 2008, vol. 253, no. 3, pp. 524–543. https://doi.org/10.1016/j.jtbi.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mott, N.F. and Nabarro, F.R., An attempt to estimate the degree of precipitation hardening, with a simple model, Proc. Phys. Soc., 1940, vol. 52, pp. 86–89.

    Article  CAS  Google Scholar 

  32. Dahlgren, S., UCRL report no. 16846, PhD Thesis, Berkeley: Univ. of California, 1966.

  33. Li, Z.J., Hofman, E., Davis, A.H., et al., Complete dopant substitution by spinodal decomposition in Mn-doped two-dimensional CsPbCl3 nanoplatelets, Chem. Mater., 2018, vol. 30, no. 18, pp. 6400–6409. https://doi.org/10.1021/acs.chemmater.8b02657

    Article  CAS  Google Scholar 

  34. Makarevich, O.N., Ivanov, A.V., Gavrilov, A.I., et al., Effect of r-Al2O3 single-crystal substrate on growth of Ti1 – xVxO2 particles under hydrothermal conditions, Russ. J. Inorg. Chem., 2020, vol. 65, no. 3, pp. 299–304. https://doi.org/10.1134/S0036023620030080

    Article  CAS  Google Scholar 

  35. Makarevich, A., Makarevich, O., Ivanov, A., et al., Hydrothermal epitaxy growth of self-organized vanadium dioxide 3D structures with metal–insulator transition and THz transmission switch properties, CrystEngComm, 2020, vol. 22, no. 15, pp. 2612–2620. https://doi.org/10.1039/c9ce01894h

    Article  CAS  Google Scholar 

  36. Ivanov, A.V., Makarevich, O.N., Boytsova, O.V., et al., Citrate-assisted hydrothermal synthesis of vanadium dioxide textured films with metal–insulator transition and infrared thermochromic properties, Ceram. Int., 2020, vol. 46, no. 12, pp. 19919–19927. https://doi.org/10.1016/j.ceramint.2020.05.058

    Article  CAS  Google Scholar 

  37. Udalova, N.N., Tutantsev, A.S., Fateev, S.A., et al., Crystallization features of MAPbI3 hybrid perovskite during the reaction of PbI2 with reactive polyiodide melts, Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, pp. 153–162. https://doi.org/10.1134/S0036023621020200

    Article  CAS  Google Scholar 

  38. Laughlin, D.E. and Cahn, J.W., Spinodal decomposition in age hardening copper–titanium alloys, Acta Metall., 1975, vol. 23, no. 3, pp. 329–339. https://doi.org/10.1016/0001-6160(75)90125-X

    Article  CAS  Google Scholar 

  39. Schwartz, L.H. and Plewes, J.T., Spinodal decomposition in Cu–9 wt % Ni–6 wt % Sn–II. A critical examination of mechanical strength of spinodal alloys, Acta Metall., 1974, vol. 22, no. 7, pp. 911–921. https://doi.org/10.1016/0001-6160(74)90058-3

    Article  CAS  Google Scholar 

  40. Shilov, V.V. and Lipatov, Yu.S., Spinodal decomposition in polymer systems, Usp. Khim., 1984, no. 7, pp. 1197–1221.

  41. Bradley, A.J., X-ray evidence of intermediate stages during precipitation from solid solution, Proc. Phys. Soc., 1940, vol. 52, no. 1, pp. 80–85. https://doi.org/10.1088/0959-5309/52/1/311

    Article  CAS  Google Scholar 

  42. Daniel, V. and Lipson, H., The dissociation of an alloy of copper, iron and nickel: further X-ray work, Proc. R. Soc. London, B, 1944, vol. 182, no. 991, pp. 378–387. https://doi.org/10.1098/rspa.1944.0012

    Article  CAS  Google Scholar 

  43. Hillert, M., A solid-solution model for inhomogeneous systems, Acta Metall., 1961, vol. 9, no. 6, pp. 525–624. https://doi.org/10.1016/0001-6160(61)90155-9

    Article  CAS  Google Scholar 

  44. Lee, D., Huh, J.-Y., Jeong, D., et al., Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation, Comput. Mater. Sci., 2014, vol. 81, pp. 216–225. https://doi.org/10.1016/j.commatsci.2013.08.027

    Article  Google Scholar 

  45. Kim, S.S. and Sanders, T.H., Phase-field simulation of spinodal phase separation in the Na2O–SiO2 glasses, J. Non-Cryst. Solids, 2020, vol. 528, paper 119591. https://doi.org/10.1016/j.jnoncrysol.2019.119591

  46. Raghavan, R., Farmer, W., Mushongera, L.T., et al., Multiphysics approaches for modeling nanostructural evolution during physical vapor deposition of phase-separating alloy films, Comput. Mater. Sci., 2021, vol. 199, paper 110724. https://doi.org/10.1016/j.commatsci.2021.11072447

  47. Findik, F., Improvements in spinodal alloys from past to present, Mater. Des., 2012, vol. 42, pp. 131–146. https://doi.org/10.1016/j.matdes.2012.05.039

    Article  CAS  Google Scholar 

  48. Baranchikov, A.E., Kopitsa, G.P., Yorov, K.E., et al., SiO2–TiO2 binary aerogels: a small-angle scattering study, Russ. J. Inorg. Chem., 2021, vol. 66, no. 6, pp. 874–882. https://doi.org/10.1134/S003602362106005X

    Article  CAS  Google Scholar 

  49. Welborn, S.S. and Detsi, E., Small-angle X-ray scattering of nanoporous materials, Nanoscale Horizons, 2020, vol. 5, no. 1, pp. 12–24. https://doi.org/10.1039/c9nh00347a

    Article  CAS  Google Scholar 

  50. Vasilevskaya, T.N., Andreev, N.S., and Ran, A.F.I., Experimental small-angle X-ray scattering investigation of initial stages the spinodal decomposition in model sodium silicate glasses, Phys. Solid State, 2011, vol. 53, no. 11, pp. 2250–2262.

    Article  CAS  Google Scholar 

  51. Kuksin, A.Yu., Norman, G.E., and Stegailov, V.V., The phase diagram and spinodal decomposition of metastable states of Lennard-Jones system, High. Temp., 2007, vol. 45, no. 1, pp. 37–48.

    Article  CAS  Google Scholar 

  52. Schaftenaar, H.P.C., Theory and examples of spinodal decomposition in a variety of materials. http://igitur-archive.library.uu.nl/chem/2008-0618-200426/UUindex.html. Cited March 2008.

  53. Mchenry, M.E. and Laughlin, D.E., Magnetic properties of metals and alloys, Physical Metallurgy, Laughlin, D.E. and Hono, K., Eds., Amsterdam: Elsevier, 2014, chapter 19, pp. 1881–2008. https://doi.org/10.1016/B978-0-444-53770-6.00019-8

  54. Cullity, B.D., Introduction to magnetic materials, Mater. Today, 2009, vol. 12, no. 3, paper 45. https://doi.org/10.1016/s1369-7021(09)70091-4

  55. McCurrie, R.A., The Structure and Properties of Alnico Permanent Magnet Alloys, 1982, chapter 3, pp. 107–188. https://doi.org/10.1016/S1574-9304(05)80089-6

  56. Takahashi, M. and Fine, M.E., Coercive force of spinodally decomposed cobalt ferrite with excess cobalt, J. Am. Ceram. Soc., 1970, vol. 53, no. 11, pp. 633–634. https://doi.org/10.1111/j.1151-2916.1970.tb15989.x

    Article  CAS  Google Scholar 

  57. Hilliard, J.E., Nucleation within crystalline phases, Ind. Eng. Chem., 1966, vol. 58, no. 4, pp. 18–25. https://doi.org/10.1021/ie50676a006

    Article  Google Scholar 

  58. Piers, S.P.K., Spinodal decomposition in a titanomagnetite, Am. Mineral., 1980, vol. 65, pp. 1038–1043.

    Google Scholar 

  59. Kirillova, S., Almjashev, V., and Gusarov, V., Spinodal decomposition in the SiO2–TiO2 system and hierarchically organized nanostructures formation, Nanosyst. Phys., Chem. Math., 2012, vol. 3, pp. 100–115.

    Google Scholar 

  60. Rieke, R., Melting influence of titanic acid on silica, alumina, and kaolin, Sprechsaal, 1908, vol. 41, pp. 405–411.

    Google Scholar 

  61. Umezu, S.K.F., Investigations on iron blast furnace slags containing titanium, Nippon Kogyo Kwaishi, 1930.

    Google Scholar 

  62. DeVries, R.C., Roy, R., and Osborn, E.F., The system TiO2–SiO2, Trans. Brit. Ceram. Soc., 1954, vol. 59, pp. 525–540.

    Google Scholar 

  63. Kaufman, L., Calculation of multicomponent ceramic phase diagrams, Phys. B + C (Amsterdam, Neth.), 1988, vol. 150, nos. 1–2, pp. 99–114. https://doi.org/10.1016/0378-4363(88)90111-8

  64. Ghoneim, N.A. and Halawa, M.M., Effect of boron oxide on the thermal conductivity of some sodium silicate glasses, Thermochim. Acta, 1985, vol. 83, no. 2, pp. 341–345. https://doi.org/10.1016/0040-6031(85)87017-9

    Article  CAS  Google Scholar 

  65. Nilsson, O., Sandberg, O., and Backstrom, G., Thermal conductivity of B2O3 glass under pressure, Int. J. Thermophys., 1985, vol. 6, no. 3, pp. 267–273. https://doi.org/10.1007/BF00522148

    Article  CAS  Google Scholar 

  66. Du, L.S. and Stebbins, J.F., Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses, J. Non-Cryst. Solids, 2003, vol. 315, no. 3, pp. 239–255. https://doi.org/10.1016/S0022-3093(02)01604-6

    Article  CAS  Google Scholar 

  67. El-Egili, K., Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses, Phys. B (Amsterdam, Neth.), 2003, vol. 325, pp. 340–348. https://doi.org/10.1016/S0921-4526(02)01547-8

  68. Dvukhfaznye stekla: struktura, svoistva, primenenie (Two-Phase Glasses: Structure, Properties, and Application), Varshala, B.G., Ed., Leningrad: Nauka, 1991.

    Google Scholar 

  69. Konon, M., Polyakova, I., Stolyar, S., et al., Mössbauer spectroscopy, XRPD, and SEM study of iron-containing Na2O–B2O3–SiO2 glasses, J. Am. Ceram. Soc., 2021, vol. 104, no. 7, pp. 3149–3157. https://doi.org/10.1111/jace.17744

    Article  CAS  Google Scholar 

  70. Pshenko, O.A., Drozdova, I.A., Polyakova, I.G., et al., Ferromagnetic iron-containing porous glasses, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 167–172. https://doi.org/10.1134/S1087659614020175

    Article  CAS  Google Scholar 

  71. Enomoto, M., The O–Ti–V system (oxygen–titanium–vanadium), J. Phase Equilib., 1996, vol. 17, no. 6, pp. 539–545. https://doi.org/10.1007/BF02666001

    Article  CAS  Google Scholar 

  72. Chen, Z., Wang, X., Qi, Y., et al., Self-assembled, nanostructured, tunable metamaterials via spinodal decomposition, ACS Nano, 2016, vol. 10, no. 11, pp. 10237–10244. https://doi.org/10.1021/acsnano.6b05736

    Article  CAS  PubMed  Google Scholar 

  73. Sun, G., Cao, X., Yue, Y., et al., Multi-nanolayered VO2/sapphire thin film via spinodal decomposition, Sci. Rep., 2018, vol. 8, no. 5342. https://doi.org/10.1038/s41598-018-23412-4

  74. Makarevich, A.M., Sobol, A.G., Sadykov, I.I., et al., Delicate tuning of epitaxial VO2 films for ultra-sharp electrical and intense IR optical switching properties, J. Alloys Compd., 2021, vol. 853, paper 157214. https://doi.org/10.1016/j.jallcom.2020.157214

  75. Makarevich, A.M., Sadykov, I.I., Sharovarov, D.I., et al., Chemical synthesis of high quality epitaxial vanadium dioxide films with sharp electrical and optical switch properties, J. Mater. Chem. C, 2015, vol. 3, no. 35, pp. 9197–9205. https://doi.org/10.1039/c5tc01811k

    Article  CAS  Google Scholar 

  76. Le Trong, H., Barnabé, A., Presmanes, L., et al., Phase decomposition study in CoxFe3 – xO4 iron cobaltites: synthesis and structural characterization of the spinodal transformation, Solid State Sci., 2008, vol. 10, no. 5, pp. 550–556. https://doi.org/10.1016/j.solidstatesciences.2007.10.004

    Article  CAS  Google Scholar 

  77. Tian, W., Li, G., Lv, S., et al., In situ formation of composite thin film with (111) oriented Ni0.5Zn0.5Fe2O4 pillar array surrounded by BaTiO3 for ferroelectric–ferromagnetic coupling, J. Alloys Compd., 2021, vol. 885, paper 161068. https://doi.org/10.1016/j.jallcom.2021.161068

  78. Samoilenkov, S.V., Boytsova, O.V., Amelichev, V.A., et al., Anisotropic strain of BaZrO3, BaCeO3 and Y2O3 nanoinclusions in a YBa2Cu3O7 – x epitaxial film matrix and its relation to the oxygen content of the superconductor, Supercond. Sci. Technol., 2011, vol. 24, no. 5, paper 055003. https://doi.org/10.1088/0953-2048/24/5/055003

  79. Zhao, R., Li, W., Lee, J.H., et al., Precise tuning of (YBa2Cu3O7 – δ) 1 – x:(BaZrO3)x thin film nanocomposite structures, Adv. Funct. Mater., 2014, vol. 24, no. 33, pp. 5240–5245. https://doi.org/10.1002/adfm.201304302

    Article  CAS  Google Scholar 

  80. Bogdanov, I.V., Kozub, S.S., Sytnik, V.V., et al., Design, fabrication and testing of a dipole magnet made with 2G HTS wire, Supercond. Sci. Technol., 2016, vol. 29, no. 10, paper 105012. https://doi.org/10.1088/0953-2048/29/10/105012

  81. Abdellahi, A., Akyildiz, O., Malik, R., et al., The thermodynamic stability of intermediate solid solutions in LiFePO4 nanoparticles, J. Mater. Chem. A, 2016, vol. 4, no. 15, pp. 5436–5447. https://doi.org/10.1039/c5ta10498j

    Article  CAS  Google Scholar 

  82. Yang, K. and Tang, M., Three-dimensional phase evolution and stress-induced non-uniform Li intercalation behavior in lithium iron phosphate, J. Mater. Chem. A, 2020, vol. 8, no. 6, pp. 3060–3070. https://doi.org/10.1039/c9ta11697d

    Article  CAS  Google Scholar 

  83. De Siena, M.C., Sommer, D.E., Creutz, S.E., et al., Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals, Chem. Mater., 2019, vol. 31, no. 18, pp. 7711–7722. https://doi.org/10.1021/acs.chemmater.9b02646

    Article  CAS  Google Scholar 

  84. Seknazi, E., Kozachkevich, S., Polishchuk, I., et al., From spinodal decomposition to alternating layered structure within single crystals of biogenic magnesium calcite, Nat. Commun., 2019, vol. 10, no. 1, paper 4559. https://doi.org/10.1038/s41467-019-12168-8

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-18-50383.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Boytsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boytsova, O.V., Makarevich, O.N., Sharovarov, D.I. et al. Spinodal Decomposition in the Chemistry and Technology of Inorganic Materials. Inorg Mater 58, 673–686 (2022). https://doi.org/10.1134/S002016852207007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852207007X

Keywords:

Navigation