Skip to main content
Log in

Synthesis and Ionic Conductivity of Lithium Titanium Phosphate-Based Solid Electrolytes

  • Published:
Inorganic Materials Aims and scope

Abstract—

The processes occurring during the solid-state synthesis of germanium-doped lithium titanium phosphate have been studied. The formation of LiTi2 – xGex(PO4)3 has been shown to proceed through the titanium pyrophosphate formation followed by its transformation into materials with the NASICON structure. The process is completed at 1073 K. To produce ceramics with an optimal conductivity, annealing at 1173 K is required. Based on the results obtained, a two-stage synthesis procedure was developed. The highest ionic conductivity (3.9 × 10–5 Ohm–1 cm–1 at 433 K) and the lowest activation energy (46 ± 1 kJ/mol) were observed for LiTi2 – xGex(PO4)3 materials with a titanium substitution degree of 20–25% (x = 0.4–0.5). It can be attributed to an optimal size of lithium transport channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lu, L., Han, X., Li, J., Hua, J., and Ouyang, M., A review on the key issues for lithium-ion battery management in electric vehicles, J. Power Sources, 2013, vol. 226, pp. 272–288.

    Article  CAS  Google Scholar 

  2. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Li-ion battery materials: present and future, Mater. Today, 2015, vol. 18, pp. 252–264.

    Article  CAS  Google Scholar 

  3. Yaroslavtsev, A.B., Stenina, I.A., and Golubenko, D.V., Membrane materials for energy production and storage, Pure Appl. Chem., 2020, vol. 92, no. 7, pp. 1147–1157.

    Article  CAS  Google Scholar 

  4. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 2014, vol. 114, pp. 11503–11618.

    Article  CAS  Google Scholar 

  5. Quartarone, E. and Mustarelli, P., Review-emerging trends in the design of electrolytes for lithium and post-lithium batteries, J. Electrochem. Soc., 2020, vol. 167, paper 050508.

  6. Stenina, I.A. and Yaroslavtsev, A.B., Nanomaterials for lithium-ion batteries and hydrogen energy, Pure Appl. Chem., 2017, vol. 89, no. 8, pp. 1185–1194.

    Article  CAS  Google Scholar 

  7. Li, Q., Chen, J., Fan, L., Kong, X., and Lu, Y., Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy Environ., 2016, vol. 1, pp. 18–42.

    Article  Google Scholar 

  8. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Yu.A., New lithium salts in electrolytes for lithium-ion batteries (review), Russ. J. Electrochem., 2017, vol. 53, pp. 677–699.

    Article  CAS  Google Scholar 

  9. Braga, M.H., Subramaniyam, C., Murchison, A.J., and Goodenough, J.B., Nontraditional, safe, high voltage rechargeable cells of long cycle life, J. Am. Chem. Soc., 2018, vol. 140, pp. 6343–6352.

    Article  CAS  Google Scholar 

  10. Goodenough, J.B. and Braga, M.H., Batteries for electric road vehicles, Dalton Trans., 2018, vol. 47, pp. 645–648.

    Article  CAS  Google Scholar 

  11. Yue, L., Ma, J., Zhang, J., Zhao, J., and Chen, L., All solid-state polymer electrolytes for high-performance lithium ion batteries, Energy Storage Mater., 2016, vol. 5, pp. 139–164.

    Article  Google Scholar 

  12. Hou, W., Guo, X., Shen, X., Amine, K., and Lu, J., Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective, Nano Energy, 2018, vol. 52, pp. 279–291.

    Article  CAS  Google Scholar 

  13. Voropaeva, D.Yu., Novikova, S.A., and Yaroslavtsev, A.B., Polymer electrolytes for metal-ion batteries, Russ. Chem. Rev., 2020, vol. 89, no. 10, pp. 1132–1155.

    Article  CAS  Google Scholar 

  14. Yaroslavtsev, A.B., Solid electrolytes: main prospects of research and development, Russ. Chem. Rev., 2016, vol. 85, no. 11, pp. 1255–1276.

    Article  CAS  Google Scholar 

  15. Zhang, Z., Shao, Y., Lotsch, B., Hu, Y.-S., Li, H., Janek, J., Nazar, L.F., Nan, C.-W., Maier, J., Armand, M., and Chen, L., New horizons for inorganic solid state ion conductors, Energy Environ. Sci., 2018, vol. 11, pp. 1945–1976.

    Article  CAS  Google Scholar 

  16. Narimatsu, E., Yamamoto, Y., Takeda, T., Nishimura, T., and Hirosaki, N., High lithium conductivity in Li1 – 2xCaxSi2N3, J. Mater. Res., 2011, vol. 26, pp. 1133–1142.

    Article  CAS  Google Scholar 

  17. Li, H., Fan, H., Wang, B., Wang, C., Zhang, M., Chen, G., Jiang, X., Zhao, N., Lu, J., and Zhang, J., Mechanical and electrical properties of lithium stabilized sodium beta alumina solid electrolyte shaping by non-aqueous gelcasting, J. Eur. Ceram. Soc., 2020, vol. 40, pp. 3072–3079.

    Article  CAS  Google Scholar 

  18. Xu, L., Li, J., Deng, W., Shuai, H., Li, S., Xu, Z., Li, J., Hou, H., Peng, H., Zou, G., and Ji, X., Garnet solid electrolyte for advanced all-solid-state Li batteries, Adv. Energy Mater., 2021, vol. 11, paper 2000648.

  19. Sastre, J. and Priebe, A., Döbeli, M., Michler, J., Tiwari, A.N., and Romanyuk, Y.E., Lithium garnet Li7La3Zr2O12 electrolyte for all-solid-state batteries: closing the gap between bulk and thin film Li-ion conductivities, Adv. Energy Mater., 2021, vol. 7, paper 2000425.

  20. Kim, A., Woo, S., Kang, M., Park, H., and Kang, B., Research progresses of garnet-type solid electrolytes for developing all-solid-state Li batteries, Front. Chem., 2020.https://doi.org/10.3389/fchem.2020.00468

  21. Catti, M., Sommariva, M., and Ibberson, R.M., Tetragonal superstructure and thermal history of Li0.3La0.567TiO3 (LLTO) solid electrolyte by neutron diffraction, J. Mater. Chem., 2007, vol. 17, pp. 1300–1307.

    Article  CAS  Google Scholar 

  22. Zheng, Z., Fang, H., Liu, Z., and Wang, Y., A fundamental stability study for amorphous LiLaTiO3 solid electrolyte, J. Electrochem. Soc., 2015, vol. 162, pp. A244–A248.

    Article  CAS  Google Scholar 

  23. Zhang, Y., Zheng, Z., Liu, X., Chi, M., and Wang, Y., Fundamental relationship of microstructure and ionic conductivity of amorphous LLTO as solid electrolyte material, J. Electrochem. Soc., 2019, vol. 166, pp. A515–A520.

    Article  CAS  Google Scholar 

  24. Lee, S.J., Bae, J.J., and Son, J.T., Structural and electrical effects of Y-doped Li0.33La0.56 – xYxTiO3 solid electrolytes on all-solid-state lithium ion batteries, J. Kor. Phys. Soc., 2019, vol. 74, pp. 73–77.

    Article  CAS  Google Scholar 

  25. Deng, Y., Eames, C., Fleutot, B., David, R., Chotard, J.-N., Suard, E., Masquelier, C., and Islam, M.S., Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect, ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 7050–7058.

    Article  CAS  Google Scholar 

  26. Hamon, Y., Douard, A., Sabary, F., Marcel, C., Vinatier, P., Pecquenard, B., and Levasseur, A., Influence of sputtering conditions on ionic conductivity of LiPON thin films, Solid State Ionics, 2006, vol. 177, pp. 257–261.

    Article  CAS  Google Scholar 

  27. Lacivita, V., Westover, A.S., Kercher, A., Phillip, N.D., Yang, G., Veith, G., Ceder, G., and Dudney, N.J., Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon), J. Am. Chem. Soc., 2018, vol. 140, pp. 11029–11038.

    Article  CAS  Google Scholar 

  28. Braga, M.H., Murchison, A.J., Ferreira, J.A., Singh, P., and Goodenough, J.B., Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, Energy Environ. Sci., 2016, vol. 9, pp. 948–954.

    Article  CAS  Google Scholar 

  29. Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 2016, vol. 1, pp. 1–7.

    Article  Google Scholar 

  30. Xie, D., Chen, S., Zhang, Z., Ren, J., Yao, L., Wu, L., Yao, X., and Xu, X., High ion conductive Sb2O5-doped B-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries, J. Power Sources, 2018, vol. 389, pp. 140–147.

    Article  CAS  Google Scholar 

  31. Huang, W., Cheng, L., Hori, S., Suzuki, K., Yonemura, M., Hirayama, M., and Kanno, R., Ionic conduction mechanism of a lithium superionic argyrodite in the –Al–Si–S–O system, Mater. Adv., 2020, vol. 1, pp. 334–340.

    Article  CAS  Google Scholar 

  32. Goodenough, J.B., Hong, H.Y., and Kafalas, J.A., Fast Na+ ion transport in skeleton structures, Mater. Res. Bull., 1976, vol. 11, pp. 203–220.

    Article  CAS  Google Scholar 

  33. Das, A., Krishna, P.S.R., Goswami, M., and Krishnan, M., Structural analysis of Al and Si substituted lithium germanium phosphate glass-ceramics using neutron and X-ray diffraction, J. Solid State Chem., 2019, vol. 271, pp. 74–80.

    Article  CAS  Google Scholar 

  34. El-Shinawi, H., Regoutz, A., Payne, D.J., Cussen, E.J., and Corr, S.A., NASICON LiM2(PO4)3 electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance, J. Mater. Chem. A, 2018, vol. 6, pp. 5296–5303.

    Article  CAS  Google Scholar 

  35. Rusdi, H., Mohamed, N.S., Subban, R.H.Y., and Rusdi, R., Enhancement of electrical properties of NASICON-type solid electrolytes (LiSn2P3O12) via aluminium substitution, J. Sci. Adv. Mater. Devices, 2020, vol. 5, pp. 368–377.

    Article  Google Scholar 

  36. Pareek, T., Dwivedi, S., Ahmad, S.A., Badole, M., and Kumar, S., Effect of NASICON-type LiSnZr(PO4)3 ceramic filler on the ionic conductivity and electrochemical behavior of PVDF based composite electrolyte, J. Alloys Compd., 2020, vol. 824, paper 153991.

  37. Key, B., Schroeder, D.J., Ingram, B.J., and Vaughey, J.T., Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries, Chem. Mater., 2012, vol. 24, pp. 287–293.

    Article  CAS  Google Scholar 

  38. Svitan’ko, A.I., Novikova, S.A., Stenina, I.A., Skopets, V.A., and Yaroslavtsev, A.B., Microstructure and ion transport in Li1 + xTi2 − xMx(PO4)3 (M = Cr, Fe, Al) NASICON-type materials, Inorg. Mater., 2014, vol. 50, no. 3, pp. 273–279.

    Article  Google Scholar 

  39. Marcinek, M., Syzdek, J., Marczewski, M., Piszcz, M., Niedzicki, L., Kalita, M., Plewa-Marczewska, A., Bitner, A., Wieczorek, P., Trzeciak, T., Kasprzyk, M., Łęzak, P., Zukowska, Z., Zalewska, A., and Wieczorek, W., Electrolytes for Li-ion transport—review, Solid State Ionics, 2015, vol. 276, pp. 107–126.

    Article  CAS  Google Scholar 

  40. Yen, P.-Y., Lee, M.-L., Gregory, D.H., and Liu, W.-R., Optimization of sintering process on Li1 + xAlxTi2 – x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2020, vol. 46, pp. 20529–20536.

    Article  CAS  Google Scholar 

  41. Bucharsky, E.C., Schell, K.G., Hintennach, A., and Hoffmann, M.J., Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1 + xAlxTi2 – x(PO4)3, Solid State Ionics, 2015, vol. 274, pp. 77–82.

    Article  CAS  Google Scholar 

  42. Zhu, Y., Zhang, Y., and Lu, L., Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic, J. Power Sources, 2015, vol. 290, pp. 123–129.

    Article  CAS  Google Scholar 

  43. Pershina, S.V., Il’ina, E.A., Druzhinin, K.V., and Farlenkov, A.S., Effect of Li2O–Al2O3–GeO2–P2O5 glass crystallization on stability versus molten lithium, J. Non-Cryst. Solids, 2020, vol. 527, paper 119708.

  44. Stenina, I.A., Kislitsyn, M.N., Pinus, I.Yu., Arkhangel’skii, I.V., Zhuravlev, N.A., and Yaroslavtsev, A.B., Phase transformations and cation mobility in NASICON lithium zirconium double phosphates Li1 ± xZr2 – xMx(PO4)3 (M = Sc, Y, In, Nb, Ta), Russ. J. Inorg. Chem., 2005, vol. 50, no. 6, pp. 906–911.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment of the JRC PMR IGIC RAS.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurzina, E.A., Stenina, I.A., Dalvi, A. et al. Synthesis and Ionic Conductivity of Lithium Titanium Phosphate-Based Solid Electrolytes. Inorg Mater 57, 1035–1042 (2021). https://doi.org/10.1134/S0020168521100071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521100071

Keywords:

Navigation