Skip to main content
Log in

Simulation of the Carbon Synthesis Process in Atmospheric-Pressure Microwave Discharge in an Argon–Ethanol Gas Mixture

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A self-consistent model has been formulated that describes microwave discharge in an argon/ethanol gas mixture. On the basis of this model, two-dimensional numerical calculations have been carried out to study the process of carbon synthesis in nonequilibrium microwave discharge plasma in an argon/ethanol gas mixture at atmospheric pressure for various values of input power. The formation of pure carbon and CH, CH2, and CH3 radicals is shown, and their distributions depending on the power input into the microwave discharge have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFRENCES

  1. Meyyappan, M., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 174002, p. 1.

    Article  Google Scholar 

  2. Plasma Processing of Nanomaterials, Sankaran, R.M., Ed., Boca Raton: CRC, 2011.

    Google Scholar 

  3. Ostrikov, K., Plasma Nanoscience: Basic Concepts and Applications of Deterministic Nanofabrication, Weinheim: Wiley–VCH, 2008.

  4. Journet, C., Picher, M., and Jourdain, V., Nanotechnology, 2012, vol. 23, no. 142001, p. 1.

    Article  Google Scholar 

  5. Samukawa, S., Hori, M., Rauf, S., Tachibana, K., Bruggeman, P., Kroesen, G., Whitehead, J.C., Murphy, A.B., Gutso, A.F., and Starikovskaia, S., J. Phys. D: Appl. Phys., 2012, vol. 45, p. 1.

    Article  Google Scholar 

  6. Adamovich, I., et al., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 323001, p. 1.

    Article  Google Scholar 

  7. Kumar, A., Lin, P.A., Xue, A., Hao, B., Yap, Y.Kh., and Sankaran, R., Nat. Commun., 2013, vol. 4, no. 2618, p. 1.

    Google Scholar 

  8. Timerkaev, B.A., Kaleeva, A.A., Timerkaeva, D.B., and Saifutdinov, A.I., High Energy Chem., 2019, vol. 53, no. 5, p. 390.

    Article  Google Scholar 

  9. Nee, C.-H., Yap, S.-L., Tou, T.-Y., Chang, H.-C., and Yap, S.-S., Sci. Rep., 2016, vol. 6, no. 33966, p. 1.

    Article  Google Scholar 

  10. Vekselman, V., Raitses, Y., and Shneider, M.N., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2019, vol. 99, no. 063205, p. 1.

    Article  Google Scholar 

  11. Lebedev, Yu.A., Averin, K.A., Borisov, R.S., Garifullin, A.R., Bobkova, E.S., and Kurkin, T.S., High Energy Chem., 2018, vol. 52, no. 4, p. 324.

    Article  CAS  Google Scholar 

  12. Averin, K.A., Lebedev, Yu.A., and Tatarinov, A.V., High Energy Chem., 2019, vol. 53, no. 4, p. 331.

    Article  CAS  Google Scholar 

  13. Yu. A. Lebedev, High Temp., 2018, vol. 56, no. 5, p. 811.

    Article  CAS  Google Scholar 

  14. Zalogin, G.N., Krasil’nikov, A.V., Rudin, N.F., Popov, M.Yu., Kul’nitskii, B.A., and Kirichenko, A.N., Tech. Phys., 2015, vol. 85, no. 5, p. 730.

    Article  Google Scholar 

  15. Xia, G., Zou, C., Li, P., Hu, Y., Ye, Q., Eliseev, S., Stepanova, O., Saifutdinov, A.I., Kudryavtsev, A.A., and Liu, M., J. Appl. Phys., 2015, vol. 118, no. 023307, p. 1.

    Google Scholar 

  16. Saifutdinov, A.I. and Kustova, E.V., J. Appl. Phys., 2012, vol. 129, no. 023301, p. 1.

    Google Scholar 

  17. Saifutdinov, A.I., Kustova, E.V., Karpenko, A.G., and Lashkov, V.A., Plasma Phys. Rep., 2019, vol. 45, no. 6, p. 602.

    Article  Google Scholar 

  18. Tsyganov, D., Bundaleska, N., Tatarova, E., Dias, A., Henriques, J., Rego, A., Ferraria, A., Abrashev, M.V., Dias, F.M., Luhrs, C.C., and Phillips, J., Plasma Sources Sci. Technol., vol. 25, no. 015013, p. 1.

  19. Snirer, M., Kudrle, V., Toman, J., Jašek, O., and Jurmanová, J., Plasma Sources Sci. Technol., 2021, vol. 30, no. 6, p. 065020.

    Article  CAS  Google Scholar 

  20. Saifutdinov, A.I., Saifutdinova, A.A., and Ti-merkaev, B.A., Plasma Phys. Rep., 2018, vol. 44, no. 3, p. 351.

    Article  Google Scholar 

  21. Hoskinson, A.R., Gregório, J., Parsons, S., and Hopwood, J., J. Appl. Phys., 2015, vol. 117, no. 163301, p. 1.

    Article  Google Scholar 

  22. Stratton, B.C., Gerakis, A., Kaganovich, I., Keidar, M., Khrabry, A., Mitrani, J., Raitses, Y., Shneider, M.N., Vekselman, V., and Yatom, S., Plasma Sources Sci. Technol., 2018, vol. 27, no. 084001, p. 1.

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research and the Republic of Tatarstan Administration, project nos. 19-31-90101 and SP-239.2021.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Saifutdinov.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napalkov, O.G., Saifutdinov, A.I., Saifutdinova, A.A. et al. Simulation of the Carbon Synthesis Process in Atmospheric-Pressure Microwave Discharge in an Argon–Ethanol Gas Mixture. High Energy Chem 55, 525–530 (2021). https://doi.org/10.1134/S0018143921060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921060102

Keywords:

Navigation