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Abstract—The problem of determining the characteristics of a laminar swirling wall jet of an incom-
pressible f luid is considered. Numerical solutions of the Navier–Stokes equations are obtained in the
stationary and non-statitonary formulations. It is shown that the jet characteristics obey a self-similar
law at large distances from the jet source, as in the case of a three-dimensional laminar non-swirling
jet, but in our case the jet propagates at a certain angle to the initial direction of jet blowing. With
a large swirling of f low in the jet, regions of recirculation f low appear and the jet f low becomes
unsteady.
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Wall jets are the jets propagating along a rigid surface. Despite the practical importance of studying wall
jets, a small number of publications are devoted to the study of f low in them. Mainly, these are experimen-
tal studies of turbulent wall jets, which can be conventionally divided into plane jets [1–4], three-dimen-
sional non-swirling jets [5–12], and three-dimensional swirling jets [13]. Numerical studies of plane wall
jets were carried out in [14, 15] and three-dimensional non-swirling wall jets were numerically studied
in [16–19]; the authors are not aware of works on the numerical study of three-dimensional swirling
wall jets.

For laminar wall jets, theoretical and numerical studies were carried out only for plane and three-
dimensional non-swirling jets. The problem of a non-swirling laminar jet f lowing out of a thin slot parallel
to the solid surface was first solved in terms of the boundary layer equations [20] and repeated in [21] three
years later. The success in solving the problem was facilitated by the fact that in the plane case it was pos-
sible to find an invariant that retains its value in any jet cross-section. The presence of the invariant made
it possible to theoretically determine the self-similarity parameter responsible for change in the character-
istics of the jet along the longitudinal coordinate , the jet thickness grows proportionally to , while
the longitudinal velocity component decays as .

In the case of the three-dimensional wall jet that f lows out from a small source parallel to the solid sur-
face, f low can be described using the parabolic Navier–Stokes equations, in which the non-order terms,
namely, the longitudinal pressure gradient and the second derivatives along the longitudinal coordinate in
the viscous terms of the equations, are neglected. In [22] an assumption was made that the solution should
reach a self-similar regime at large distances from the jet source. But in [22], the law of conservation of
the angular momentum of f low was used to determine the self-similarity parameter; actually, this momen-
tum is not conserved. In [23], the value of the self-similarity parameter and various jet characteristics
associated with it were obtained. Since for the three-dimensional wall jet no invariant solution has been
constructed to date, the self-similarity parameter can be determined only by numerically solving the prob-
lem [24]; this was made in [23]. As a rule, in the absence of the invariant, it is impossible to obtain uni-
versal characteristics. For example, in the case of the three-dimensional wall jet, the profiles of velocity
components and pressure will vary as functions of the shape of the outlet cross-section and its height
above the jet outlet plane depending on the velocity profile and the Reynolds number. However, as shown
in [23], the universal profiles can still be constructed if one assumes that the invariant, although not
found, exists and if there exists an asymptotic solution of the problem in some domains.
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1034 GAIFULLIN, SHCHEGLOV
In the present paper we will consider three-dimensional swirling laminar wall jets. As a result of the
studies, the authors tried to answer the following questions. Do the characteristics in the far field of the
jet obey self-similarity laws, and if so, does the self-similarity parameter depend on the swirl of the jet?
The line along which the jet propagates in the presence of swirl will no longer be straight line. Is this line
in the far field parallel to the  axis along which the jet is blown out, or is it inclined to it at some angle?
This article is devoted to the solution of these and some other questions.

1. FORMULATION OF THE PROBLEM.
We will consider steady-state incompressible f luid f low. We will introduce a Cartesian coordinate sys-

tem , , . In this coordinate system the velocity components will be denoted by , , . We will
denote the f luid density by , the pressure , and the kinematic viscosity coefficient by . The infinite
rigid plane is given by the equation . The jet is blown out of a round cylindrical pipe of radius  in
parallel to the rigid plane in the direction of the  axis into submerged space. The center of the inlet pipe
cross- section has the coordinates , , . Similarly to [25], the jet is swirled by rotating the
inner surface of the pipe. The outer surface of the pipe does not rotate. At the outlet pipe cross-section,
the jet is swirled clockwise from the f low side.

We will define the dimensionless coordinates and variables

where  is the average-flow-rate velocity of f luid in the pipe.
The fluid f low will be considered to be laminar, its characteristics must satisfy the Navier–Stokes

equations

(1.1)

In [23] it was also shown that the characteristics of the three-dimensional wall jet at high Reynolds
numbers can be determined in the approximation of parabolic equations

(1.2)

(1.3)

(1.4)

(1.5)

In the case of the non-swirling three-dimensional wall jet, at large  the solution of Eqs. (1.2)–(1.5)
tends to the following self-similar solution with the self-similarity parameter equal to 4/3:

Thus, the thickness and width of the three-dimensional non-swirling laminar wall jet increases in pro-
portion to .
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LAMINAR SWIRLING WALL JETS 1035
For a given shape and height above the surface of the outlet pipe cross-section, the characteristics of
the laminar swirling wall jet will depend on several initial parameters specified in the jet outflow cross-
section namely, the f low rate, the swirl, and the Reynolds number. We will determine the missing param-
eters. We will assume that the pipe from which the jet is blown is long enough so that the Poiseuille profile
for the longitudinal velocity component and solid-body rotation for the azimuthal velocity  are estab-
lished in the cross-sections not close to the exit cross-section:

(1.6)

Here, the dimensionless radius  is reckoned from the axis of the pipe,  is the angular
velocity of rotation of f luid in the pipe, and it is taken into account that the average-flow-rate velocity is
equal to , and the maximum velocity is equal to . By swirl number we mean the quantity

.

At exit of the pipe, the jet has the momentum  in the -direction and the momentum  close to zero
in the -direction

Under the action of the friction forces of f luid against the rigid surface, the longitudinal momentum of
the jet will decrease with increase in , and the transverse momentum will first be acquired and then lost.
From Eqs. (1.3) and (1.5) it follows that

We can formulate the following hypothesis: at large distances from the jet source, asymmetry in the jet
caused by the rotation of f luid in the outlet cross-section will disappear, the evolution of the jet will not
differ in any way from the evolution of a non-swirling jet, but due to the acquired lateral momentum, the
jet will propagate not along the  axis, but along a straight line inclined to the  axis at a certain angle ,
and for the swirling jet the self-similarity parameter will coincide with the self-similarity parameter for the
non-swirling jet, i.e., it will be equal to .

2. NUMERICAL SOLUTION

The Navier–Stokes equations (1.1) were solved numerically using the finite volume method. The con-
vective terms were approximated using a second-order accuracy scheme with differences upstream of the
flow, and the diffusion terms and the pressure were approximated using central differences of second-
order accuracy. The momentum and pressure equations were solved jointly. The problem was solved as the
pseudo-nonstationary one with a fixed pseudo-time step.

The simulation was carried out on a structured computational grid with a total number of cells .
In Fig. 1 we have given the parameters of the computational domain and the geometric parameters of the
pipe (the surface of the pipe is highlighted in gray); proportions between different sizes in Fig. 1 are not
respected. The expanding computational domain makes it possible to concentrate most of the cells inside
the jet core.

The following boundary conditions were set on the boundaries of the computational domain:
• in the initial cross-section (5), the profiles of the velocity components are specified in accordance

with (1.6);
• on the horizontal rigid surface (9) and on the surfaces (internal and external) of the pipe (6), the no-

slip condition is specified;
• on the side (1), (2), top (3), front (7, 8) and exit (4) free boundaries the following condition is

imposed
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Fig. 1. Coordinate system of the problem and geometry of the computational domain.
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Fig. 2. Graphs of  and : curves 1 and 2 correspond to S = 0.56 and 0.33, respectively.
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The establishment of a solution is monitored by the magnitude of the mass f low across the bound-
ary (4) of the computational domain. In this case, the magnitude of the residuals in the momentum equa-
tion is not greater than .

3. CALCULATION RESULTS

To be specific, we will assume that the center of the outlet pipe cross-section is located at the height
 (Fig. 1). Two calculations were carried out at Re = 77, , and .

There is some arbitrariness in the choice of defining the center of the jet. In this work, the center of the
jet in the cross-section  is the point with coordinates , at which the velocity com-

ponent parallel to the rigid plane has a maximum, i.e., the function  has a maxi-
mum at a given . In Fig. 2 we have reproduced the graphs of the functions  and , from which
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Fig. 3. (a) Cross-flow streamlines at Re = 77 and S = 0.56 in the cross-section  in the original coordinate system.

(b) Cross-flow streamlines at Re = 77 and S = 0.56 in the cross-section  in the new coordinate system.
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it follows that the jet actually propagates at a certain angle to the  axis. Obviously, this angle depends on

the initial jet swirl. At  and  these angles are equal to 1.7° and 2.7°, respectively.

We introduce the concept of a cross-flow streamline in the cross-section . The stream-
line equation is as follows:

In Fig. 3a have plotted the cross-flow streamlines at . If instead of coordinates  we intro-

duce a coordinate system  turned by an angle  (Fig. 4), then in this coordinate system the cross-flow
streamlines correspond to those shown in Fig. 3b. In Fig. 3b the streamlines correspond to similar calcu-

lations for the non-swirling jet [23]. For jet propagation along the  axis, a determined self-similarity

parameter is equal to . This confirms the hypothesis on the correspondence of the evolution of the

swirling jet turned by an angle  in the far field to the evolution of the non-swirling jet.

4. ABSENCE OF THE STATIONARY SOLUTION AT LARGE S

Just as in the free jet, an increase in the jet swirl leads to appearance of recirculation f low regions in the
flow [26]. When the reverse f low appears, the residuals when solving the time-independent Navier–
Stokes equations can no longer be made less than a certain specified value. This fact indicates the need to
solve the problem using the time-dependent Navier–Stokes equations.
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Fig. 4. Rectangular Cartesian coordinate systems , ,  and , , . Dashed line corresponds to the line ,

, the points are the projection of the dashed line onto the plane . The  axis is directed along the tangent

to the projection of the dashed line onto the plane  at point .
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Fig. 5. Streamlines corresponding to the calculation at .
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The calculation results are presented in Figs. 5 and 6 in the form of streamlines in the cross-section

At , although a nonstationarity is present, but the streamline pattern depends on time only
slightly (see Fig. 5). It is a different matter when the jet swirl becomes even greater, S ≈ 2.2 (see Fig. 6).
In this case, in the vicinity of the recirculation region, whose geometry strongly depends on time, addi-
tional vortices of different directions of rotation are formed. The f low becomes periodic. In Fig. 6 we have
shown the characteristic change in the streamlines at regular intervals during the period. The f low peri-
odicity can also be observed by changes in the longitudinal velocity component at a given point in space.
As such, a point on the extension of the pipe axis spaced 4 radii from the outlet section was taken (see Fig. 7).

SUMMARY

For the first time, important distinctive features of the evolution of a three-dimensional swirling lam-
inar jet have been determined. The jet swirl causes the jet to deviate from the original direction. In the far
region, the jet propagates at a certain angle to this initial direction. The three-dimensional swirling wall
jet quickly loses its swirl, and in a turned coordinate system its behavior in the far region differs only
slightly from that of the non-swirling jet. Accordingly, the self-similarity parameter turns out to be the

same as in the non-swirling jet, namely, it is equal to . The transverse dimensions of the jet increase
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Fig. 6. Streamlines for the calculation at  that correspond to four different points in time during a single period
in the chronological order.
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Fig. 7. Variation in the longitudinal velocity component at a fixed point in space in the neighborhood of the outlet pipe
cross-section.
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proportionally to , the longitudinal velocity component decays according to the law , and the

transverse components proportionally to .

At high swirl, areas of recirculation f low appear in the jet. The f low becomes unsteady and periodic.
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