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Abstract—The paper reports the assessment of the possibility to recover information obtained using an artifi-
cial neural network via inspecting neural activity patterns. A simple recurrent neural network forms dynamic
excitation patterns for storing data on input stimulus in the course of the advanced delayed match to sample
test with varying duration of pause between the received stimuli. Information stored in these patterns can be
used by the neural network at any moment within the specified interval (three to six clock cycles), whereby it
appears possible to detect invariant representation of received stimulus. To identify these representations, the
neural network-based decoding method that shows 100% efficiency of received stimuli recognition has been
suggested. This method allows for identification the minimum subset of neurons, the excitation pattern of
which contains comprehensive information about the stimulus received by the neural network.
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The possibility of reconstructing the content of
data processed by the brain from the dynamic patterns
of neural activity is the key task in the Neural Cor-
relates of Consciousness (NCC) concept [1]. Accord-
ing to the current views and based on neurophysiolog-
ical data [2–4], encoding task-relevant information in
working memory is very dynamic since it is repre-
sented by widely varying patterns of neuronal activity.

It is known that coding the information about the
external stimulus received by the recurrent artificial
neural network (RNN) in the course of a delayed
matching-to-sample (DMS) test is also a dynamic
process [5]. Because in the present study the pause
length between the acquisition of two stimuli was
fixed, the only requirement was to reach the desired
point in the RNN neural activity space by the time the
second stimulus arrives [2]. If the pause length
between the first and second stimuli is chosen ran-
domly from a given interval, then the problem of how
the information available for use at any moment
during the pause can be stored in the RNN becomes
much more challenging.
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The aim of the present work was to assess the pos-
sibility of identifying the stimulus received by RNN
based on the neural activity pattern in the period when
the network stores data about the stimulus in its work-
ing memory in the ready-to-respond state. The task
which requires RNN storing information in the form
of a neuronal activity pattern for a certain period of
time is a DMS test.

Simple RNNs with two inputs and 25 internal neu-
rons were used. The neuron number was determined
empirically as the minimum number required to
complete the task. In contrast to 20-neuron RNNs,
the 25-neuron ones could be successfully trained (to
the error as low as about 10–5). Verification showed
that 30-neuron RNNs were easier to train to pass the
DMS test. However, 25-neuron RNNs are more con-
venient in terms of analysis, while focus on using the
minimum possible neuron set is in line with the neural
correlates approach.

The initial values for weight coefficients were cho-
sen randomly from within the (–0.025; 0.025) range.
RNN response  at the time point t was recorded at
the two output neurons:

(1)

where Wh, Wi, Wo are the weight coefficient matrices
for the internal neurons, input, and output neurons,
respectively; x(t) is the vector of input signals at the
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time point t;  and  are vectors describing inter-
nal neuron excitation levels at the time points t and t – 1.
The fh(.) and fo(.) functions are activation functions
for internal and output neurons, respectively. For the
sake of simplicity, neuron displacements are omitted
from the equations.

The activation function for internal neurons was
sigmoidal (2a). The piecewise linear activation func-
tion (2b) for the output neurons was used to obtain an
accurate 0/1 output signal.

(2)

The parameters of the activation functions (2) had
the values a = 0.1 and b = 1, which were selected
empirically for the fastest RNN training. The synapse
modification step was set equal to 10–3.

The RNN was trained using the error backpropa-
gation algorithm. Since the structure of the trained
network does not depend on the training algorithm [6,
7], its specific form is not important for the analysis of
its functioning. The quadratic loss function was used:

(3)

where  and   the present and the required signals
at the ith RNN output neuron at the time point t and
N is the output neuron number.

RNN could receive one of the three input stimuli:
A, (01); B, (10); and C, (11). Given that (00) is the
absence of any stimuli, the full set of possible stimuli
for a given number of inputs was used. The DMS test
was conducted as follows. One of the randomly chosen
stimuli (A, B, C) arrived to the RNN input at random
time points. The stimulus was presented to the RNN
as a single beat. Then a pause 3 to 6 beats long followed
during which no signal arrived at the RNN input. The
length of the pause was also determined randomly.
Then a second stimulus was presented once, also cho-
sen at random. The third beat after the second stimu-
lus was the RNN response (10) or (01) which
depended on whether the two acquired stimuli were
the same or different. Then, after a relaxation period
of at least 9 beats, the next training cycle began. Thus,
the training sample was continuously generated during
the training process, which allowed us to neglect the
probability that significant fragments of the input
stream of quasi-random events would be repeated.

The trained RNNs were subjected to the DMS test
in the function mode in the same continuous quasi-
random event stream ensuring non-reproducibility of
the test signal sample.
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To identify the stimulus received by the RNN, we
used data on the network’s neural activity during the
pause between the first and second stimuli. During
this period from the 3 to 6 beats after receiving the first
stimulus, the RNN stored the information about this
stimulus in the form of a neural activity pattern. The
neural activity dynamics revealed high variability of
excitation patterns in the interval between the stimuli
with no clear signs of statics. To identify the stimulus
in the function mode, the pause between the stimuli
was set to be of maximum length (6 beats).

As a control, the centroid method [8] was used to
identify the dynamic invariant of RNN neural activity
during the information storage period. The activity of
the RNN neurons at each moment of time was repre-
sented as a point in the multidimensional neuronal
activity space with RN dimensions, where N is the
number of neurons in the RNN. By averaging the
activity at four consecutive beats during the informa-
tion storage period, the most likely location of the
points corresponding to each of the three possible
stimuli was calculated:

(4)

where  is the activity at the RNN neuron n at the
time point t after receiving the stimulus α(A, B, C). In
this case, activity values from the training sample were
used. The three points thus obtained were the A, B,
and C centroids, respectively. To identify the stimulus,
squared Euclidean distances from each centroid to the
points from the test sample were calculated:

(5)

where  is the activity at the RNN neuron n at the
time point t obtained from the test sample.

Identification of the stimulus, information about
which was stored encoded in the RNN neural activity
was carried out according to which of the three cen-
troids was closest to the point in question:

(6)

The resulting stimulus type  was compared
with the real one available for each test data set and
based on this the accuracy of identification was evalu-
ated.

Although in a number of cases the centroid method
allowed correct identification of stimulus based on the
neural activity pattern, its efficiency did not exceed
80%, which could be explained by the high signal vari-
ability (Fig. 1). At different points within the stimulus
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Fig. 1. Using the centroid method to identify RNN-derived stimuli. Columns, distances from the points in the neuronal activity
space to each of the three centroids. The type of the input stimulus received by the RNN is indicated at the top of the diagram.
Letters above each group of columns indicate the type of the stimulus identified in the corresponding beat based on the minimum
distance to the centroids.
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Fig. 2. DN training experiment outline.
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storage period, the accuracy of identification using
this method was different.

As the next step, the invariant representation stor-
ing the information about the received stimulus during
four beats was extracted with the aid of an additional neu-
ral network, a neural network decoder (DN) (Fig. 2).

A single-layer neural network consisting of three
neurons with linear response was used as the DN (2b).
Each neuron had a modifiable synapse with each of
the inputs, the number of which was equal to the num-
ber of neurons in the RNN. The DN produced 1 at
one of the three neurons corresponding to the assigned
stimulus and zeros at the others. The error backpropa-
gation algorithm was used for training. The loss func-
tion was quadratic as it was in the previous case (3).

The input data for the DN were the neural activity
of a particular RNN which was subjected to the DMS
test. The neural activity of the RNN was recorded line
by line. The line contained the activity of each of the
25 RNN neurons at a given moment in time (3, 4, 5,
or 6 beats after the first stimulus), and the stimulus,
the information about which was stored in the RNN at
that time, was associated with it. For all the trained
DOKLADY BIOLOGICAL SCIENCES  Vol. 502  2022
RNNs, 72 lines were recorded, which were distributed
between the training and test samples randomly.

An individual DN needed to be trained for each
trained RNN, indicating the uniqueness of the neural
network’s internal stimulus representation. The
trained DNs decoded the stimuli represented by
RNNs with 100% accuracy. The DN structure was
further reduced, namely, the synapses with the lowest
absolute values were sequentially equated to zero, and
at each step, the DN was trained again until it reached
its original performance level. This procedure was
stopped when DN performance started to decline. As
a result, a group of six or seven neurons was selected
for each of the trained RNNs, whose activity was used
to decode the received stimuli.

The neural activity invariants corresponding to the
conditions for recognizing each of the three stimuli
may be localized in the multidimensional space of
dynamic patterns. Towards this end, the sets of ran-
domly generated numbers imitating the activities of
RNN neurons selected for decoding were applied to
the inputs of trained DNs. Those sets of random num-
bers which were identified as corresponding to any of
the stimuli by the DN were selected and considered as
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points in the neural activity space representing the
code of a certain stimulus.

Let us consider the structure of a particular DN as
an example. This DN identified the six neurons from
the original network numbered 2, 3, 8, 17, 20, 21 as sig-
nificant and sufficient.

When the input data pass through the DN, the
result of the calculation has the general form

 + ,
where  is a nonzero weight DN coefficient obtained
after DN structure was reduced was reduced which
links the i DN input with the neuron responsible for
the recognition of the α stimulus,  is the activity of
the neuron i in the original RNN, and .
When   and , the DN identifies
the resulting data set as storing the information about
the stimulus A. The datasets for the stimuli B and C are
identified in the same way.

Linear polynomials which allow identifying the
invariants for the RNN considered as an example are
as follows:
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Fig. 3. Invariant configurations corresponding to stimulus re

−3.0

−3.0−3.0−4.0

−2.5

−2.5

−2.0

−2.0

−1.5

−1.5

−1.0

−1.0

−0.5

−0.5

0.5

0

1.0

1.5

2.0

2.5

3.0

PC-1

4.0

3.5

0

0

Principal component analysis showed that the
points corresponding to invariant recognition prop-
erty in the neuronal activity space form three compact
clusters (see Fig. 3 for an example). Mapping the neu-
ron activity onto the two-dimensional plane formed
by the first and the second principal components is
sufficient for recognition. The activity of one neuron
among the six RNN neurons make insignificant con-
tribution to the second principal component. This
suggests that the activities of five neurons are sufficient
for stimulus recognition for a given RNN, although
such variant was not detected when reducing the DN
structure. Therefore, principal component analysis or
similar methods may be useful to finally minimize the
number of stimulus coding invariant representations
in the neural network.

Based on the results obtained in the present work,
we may conclude that despite the dynamic nature of
neuronal activity enabling the storage of information
about the received stimuli the stimulus type may be
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cognition conditions after the principal component analysis.
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identified based on neuronal activity patterns. Neural
network–based decoding method proposed in the
present work allows to identify the dynamic neuronal
activity invariant which represents a given stimulus
with 100% accuracy. In addition, this approach
implies the identification of the minimum set of neu-
rons and, consequently, the minimum neuronal activ-
ity required to solve the task set for the neural network;
hence, this approach is in line with the concept of neu-
ral correlates [1].

FUNDING

The work was supported by the Russian Foundation for
Basic Research, the Krasnoyarsk Krai Government, and
the Krasnoyarsk Regional Science Foundation (project no.
20-41-240003).

COMPLIANCE WITH ETHICAL STANDARDS

The study does not contain any research involving ani-
mals or humans.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

REFERENCES
1. Crick, F. and Koch, C., Nat. Neurosci., 2003, vol. 6, no.

2, pp. 119–126.
2. Meyers, E.M., D J. Neurophysiol., 2018, vol. 120, no. 5,

pp. 2260–2268.
3. Barak, O., Tsodyks, M., and Romo, R., J. Neurosci.,

2010, vol. 30, no. 28, pp. 9424–9430.
4. Stokes, M.G., Kusunoki, M., Sigala, N., et al., Neuron,

2013, vol. 78, no. 2, pp. 364–375.
5. Miconi, T., Elife, 2017, vol. 6б e20899.
6. Bartsev, S.I. and Bartseva, O.D., Dokl. Biochem. Bio-

phys., 2002, vol. 386, pp. 235–238.
7. Bartsev, S.I. and Bartseva, O.D., Dokl. Biochem. Bio-

phys., 2006, vol. 406, pp. 15–18.
8. Crowe, D.A., Averbeck, B.B., and Chafee, M.V., J. Neu-

rosci., 2010, vol. 30, no. 35, pp. 11640–11653.

Translated by E. Martynova
DOKLADY BIOLOGICAL SCIENCES  Vol. 502  2022


	REFERENCES

		2022-03-14T11:45:22+0300
	Preflight Ticket Signature




