
ISSN 0012-2661, Differential Equations, 2021, Vol. 57, No. 8, pp. 1076–1087. © The Author(s), 2021. This article is an open access publication.
Russian Text © The Author(s), 2021, published in Differentsial’nye Uravneniya, 2021, Vol. 57, No. 8, pp. 1104–1115.

CONTROL THEORY

On the Existence of a Periodic Mode
in a Nonlinear System

A. S. Fursov1,2,3∗, R. P. Mitrev4∗∗, P. A. Krylov2∗∗∗, and T. S. Todorov4∗∗∗∗

1Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, China
2Lomonosov Moscow State University, Moscow, 119991 Russia
3Kharkevich Institute for Information Transmission Problems,

Russian Academy of Sciences, Moscow, 127051 Russia
4Technical University, Sofia, 1000 Bulgaria

e-mail: ∗fursov@cs.msu.ru, ∗∗rosenm@tu-sofia.bg, ∗∗∗pavel@leftsystem.ru, ∗∗∗∗tst@tu-sofia.bg
Received March 1, 2021; revised May 19, 2021; accepted June 8, 2021

Abstract—We consider a nonlinear control system with a bang-bang hysteresis control, which
is a simplified model of a thermal energy harvester. We obtain conditions on the controller and
the system parameters guaranteeing the existence of a periodic mode in the system.

DOI: 10.1134/S0012266121080127

INTRODUCTION

The paper [1] dealt with the nonlinear control system

mÿ(t) + βẏ(t) + ky(t) = αl−1E
(
T (t)

)(
∆− y(t)

)
−mg,

αγ−1Ṫ (t) + T (t) = u
(1)

on the half-line t ≥ 0 with the initial conditions

y(0) = y0, ẏ(0) = 0, T (0) = T0 (2)

and the bang-bang hysteresis feedback control (Fig. 1)

u = ur
(
y(t)

)
=



u if y(t) ≤ y1

u if y(t) ≥ y2

u if y(τ) ∈ (y1, y2) for all τ ∈ [0, t]

u if y(t) ∈ (y1, y2) and there exists an s ∈ [0, t)

such that y(s) = y1 and y(τ) ∈ (y1, y2) for all τ ∈ (s, t]

u if y(t) ∈ (y1, y2) and there exists an s ∈ [0, t)

such that y(s) = y2 and y(τ) ∈ (y1, y2) for all τ ∈ (s, t].

(3)

System (1) is a simplified model of a thermal energy harvester [2], where the following nota-
tion is used: y is an output variable characterizing the strain of a shape memory material [3]
with 0 < y0 < ∆; T is the material temperature with T0 ≥ 0; the positive numbers m, β, k, α,
l, ∆, and γ are physical parameters of the thermal energy harvester; g is the acceleration due to
gravity; u is an output feedback control (u = u(y)); and E is the material Young modulus, which
is described by a nonlinear characteristic with hysteresis and saturation (see Fig. 2).
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Fig. 1. Bang-bang feedback control. Fig. 2. Possible characteristic E(T ) with hysteresis.

The mapping E(T ) can be viewed as a set-valued mapping E : R+ → R+,

E(T ) =



E1 if T ≤M1[
E1,

T −M1

M2 −M1

(E2 − E1) + E1

]
if

M2 < A1

T ∈ (M1,M2][
T −A1

A2 −A1

(E2 − E1) + E1,
T −M1

M2 −M1

(E2 − E1) + E1

]
if

A1 ≤M2

T ∈ (A1,M2]

[E1, E2] if

M2 < A1

T ∈ (M2, A1][
T −A1

A2 −A1

(E2 − E1) + E1, E2

]
if

M2 < A1

T ∈ (A1, A2][
T −A1

A2 −A1

(E2 − E1) + E1, E2

]
if

A1 ≤M2

T ∈ (M2, A2]

E2, if T > A2.

Here A1, A2, M1, M2, E1, and E2 are positive constants determined by the physical properties of
the shape memory material. In what follows, we assume that these constants are related by the
inequalities

0 < A1 < A2, 0 < M1 < M2, M1 < A1, M2 < A2, 0 < E1 < E2.

Note that, given a specific continuous function T (t), a single-valued branch of E(T ) is selected,
which is a continuous function ranging in the interval [E1, E2] (see [1]).

We assume that the threshold values y1 and y2 characterizing the control (3) satisfy the condi-
tion 0 < y1 < y2 < ∆.

Efficiently verifiable conditions on the coefficients and initial values of the state variables in
system (1), (2) and on the parameters of the controller (3) ensuring the onset of oscillatory mo-
tions [4, pp. 10] in the closed-loop system were obtained in [1], where the following definition of
oscillatory motion (oscillatory mode) was used. A solution of system (1), (2), that is, a pair of
functions (y(t), T (t)) satisfying the system and the initial conditions with the control u given by (3)
is called an oscillatory mode if there exist positive constants (mode parameters) t∗1, t∗2, y, and y
(where 0 < t∗1 < t∗2 and 0 < y < y < ∆) such that the following conditions are satisfied:

1. There exists a t ≥ 0 such that y(t) = y.
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2. For each t such that y(t) = y, there exists a ξ ∈ [t+ t∗1, t+ t∗2] such that y(ξ) = y and y(τ) 6= y
for all τ ∈ (t, t+ t∗1).

3. For each t such that y(t) = y, there exists a ξ ∈ [t+ t∗1, t+ t∗2] such that y(ξ) = y and y(τ) 6= y
for all τ ∈ (t, t+ t∗1).

An analysis of the results in [1] shows that the problem of finding conditions on the parameters
of the closed-loop system (1)–(3) guaranteeing the existence of oscillatory modes turns out to be
very difficult. However, from the viewpoint of applications, the problem of determining conditions
for the existence of a periodic mode in the closed-loop system is more important.

In the present paper, based on the results in [1], we obtain sufficient conditions for the existence
of a periodic mode in the closed-loop system (1)–(3).

1. STATEMENT OF THE PROBLEM

We write system (1), (2) in the normal Cauchy form

ẋ1(t) = x2(t),

ẋ2(t) = −
(
k

m
+

α

lm
E
(
x3(t)

))
x1(t)− β

m
x2(t)− g +

α

lm
∆E

(
x3(t)

)
,

ẋ3(t) = −γ
α

(
x3(t)− u

)
,

x1(0) = y0, x2(0) = 0, x3(0) = T0,

(4)

where x1 = y, x2 = ẏ, x3 = T , 0 < y0 < ∆, and T0 ≥ 0.
The corresponding closed-loop system with the controller (3) for t ≥ 0 has the form

ẋ1(t) = x2(t),

ẋ2(t) = −
(
k

m
+

α

lm
E
(
x3(t)

))
x1(t)− β

m
x2(t)− g +

α

lm
∆E

(
x3(t)

)
,

ẋ3(t) = −γ
α

(
x3(t)− ur

(
x1(t)

))
,

x1(0) = y0, x2(0) = 0, x3(0) = T0,

(5)

where 0 < y0 < ∆ and T0 ≥ 0; we assume that y0 < y1 and T0 < M1. We write the closed-loop
system (5) in the vector form

ẋ(t) = P
(
x(t), ur

)
, x =

(
x1, x2, x3

)T
.

Now we say that the system
ẋ(t) = P

(
x(t), u

)
(6)

is active if the bang-bang relay output is u and the system

ẋ(t) = P
(
x(t), u

)
(7)

is active if the bang-bang relay output is u.
Then the solution of the closed-loop system (5) with the initial conditions x(0) = (y0, 0, T0)T,

y0 < y1, is sought in the class of continuous vector functions x(t) in accordance with the following
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algorithm of active mode alternation:

ẋ(t) =



P
(
x(t), u

)
if x1(t) ≤ y1

P
(
x(t), u

)
if x1(t) ≥ y2

P
(
x(t), u

)
if x1(t) ∈ (y1, y2) and there exists an s ∈ [0, t)

such that x1(s) = y1 and x1(τ) ∈ (y1, y2) for all τ ∈ (s, t]

P
(
x(t), u

)
if x1(t) ∈ (y1, y2) and there exists an s ∈ [0; t)

such that x1(s) = y2 and x1(τ) ∈ (y1, y2) for all τ ∈ (s, t].

(8)

Here the solutions of systems (6) and (7) are matched by continuity at the points of discontinuity
of the right-hand side of the system (on the hyperplanes x1 = y1 and x1 = y2). In what follows,
a function f defined on the half-line t ≥ 0 is said to be Θ-periodic if f(t+ Θ) = f(t) for all t ≥ 0.

Now let us state a control problem for system (4).

Problem. Find constraints on the number parameters m, k, α, l, β, ∆, and γ of system (4) as
well as on the parameters y1, y2, u, and u of the controller (3) under which there exists a periodic
solution (periodic mode) in the closed-loop system (5).

2. PERIODIC MODE IN SYSTEM WITH PROGRAMMED CONTROL

We divide the solution of the problem about the existence of a periodic solution in system (5) into
several steps. First, we study the existence of a periodic solution of system (4) with the programmed
control

up(t) =

u if t ∈ [qΘ, qΘ + Θ1)

u, if t ∈ [qΘ + Θ1, qΘ + Θ1 + Θ2),
q = 0, 1, 2, . . . ; Θ1 + Θ2 = Θ. (9)

Here u, u, Θ1, and Θ are positive parameters of the programmed control.
Now consider the problem of finding control parameter values ensuring the existence of a periodic

solution of the closed-loop system (4), (9).
First, note that this control u(t) is a piecewise constant Θ-periodic function. Let us show that

the equation
ẋ3(t) = −γ

α

(
x3(t)− up(t)

)
(10)

has a Θ-periodic solution for any u, u, and Θ > Θ1 > 0. Indeed, the Cauchy formula

x3(t) = x3(s)e−γ(t−s)/α +

t∫
s

e−γ(t−τ)/α γ

α
u(τ) dτ (11)

holds for the solutions of Eq. (10) for any t ≥ s ≥ 0. Let x3(0) = T0. Since up(t) ≡ u on the
interval [0,Θ1), it follows from (11) that

x3(Θ1) = T0e
−γΘ1/α +

γ

α
u

Θ1∫
0

e−γ(Θ1−τ)/α dτ

= T0e
−γΘ1/α + u(1− e−γΘ1/α) = u+ (T0 − u)e−γΘ1/α.

(12)

Further, since up(t) ≡ u on the interval [Θ1,Θ), we obtain

x3(Θ) = u+
(
x3(Θ1)− u

)
e−γΘ2/α = u+

(
u+ (T0 − u)e−γΘ1/α − u

)
e−γΘ2/α

= u(1− e−γΘ2/α) + u(1− e−γΘ1/α)e−γΘ2/α + T0e
−γΘ/α.

(13)
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In view of the Θ-periodicity of the function up(t), we conclude that the solution x3(t) is Θ-periodic
if and only if x3(Θ) = T0. Then we find the initial condition for the Θ-periodic solution xΘ

3 (t) from
the representation (13),

T0 = T =
u(1− e−γΘ2/α) + u(1− e−γΘ1/α)e−γΘ2/α

1− e−γΘ/α
. (14)

It follows from (13) and (14) that

xΘ
3 (Θ1) =

u(1− e−γΘ1/α) + u(1− e−γΘ2/α)e−γΘ1/α

1− e−γΘ/α
.

Now we set T = xΘ
3 (Θ1) and γ̂ = γ/α and write the Θ-periodic solution of Eq. (10) in closed

form,

xΘ
3 (t) =

u+ (T − u)e−γ̂(t−qΘ) if t ∈ [qΘ, qΘ + Θ1)

u+ (T − u)e−γ̂(t−qΘ−Θ1) if t ∈ [qΘ + Θ1, qΘ + Θ),
q = 0, 1, 2, . . .

Now assume that the parameters u, u, Θ1, and Θ of the controller (9) have been chosen so that

T < M1, T > A2. (15)

Assuming that the component x3 of the solution of the closed-loop system (4), (9) satisfies the
initial condition x3(0) = T , consider the subsystem

ẋ1(t) = x2(t),

ẋ2(t) = −
(
k

m
+

α

lm
ϕ(t)

)
x1(t)− β

m
x2(t)− g +

α

lm
∆ϕ(t),

x1(0) = y0, x2(0) = 0,

(16)

where ϕ(t) = E(xΘ
3 (t)). By virtue of conditions (15) and the fact that xΘ

3 (t) is a Θ-periodic solution
of Eq. (10), the function ϕ(t) will be Θ-periodic as well, and we can write

ϕ(t) =



E1, t ∈ [qΘ, qΘ + ΘA1
)

u+ (T − u)e−γ̂(t−qΘ) −A1

A2 −A1

(E2 − E1) + E1, t ∈ [qΘ + ΘA1
, qΘ + ΘA2

)

E2, t ∈ [qΘ + ΘA2
, qΘ + Θ1)

E2, t ∈ [qΘ + Θ1, qΘ + ΘM2
)

u+ (T − u)e−γ̂(t−qΘ−Θ1) −M1

M2 −M1

(E2 − E1) + E1, t ∈ [qΘ + ΘM2
qΘ + ΘM1

)

E1, t ∈ [qΘ + ΘM1
, qΘ + Θ),

(17)

where
ΘA1

=
1

γ̂
ln

T − u
A1 − u

, ΘA2
=

1

γ̂
ln

T − u
A2 − u

,

ΘM1
= Θ1 +

1

γ̂
ln

T − u
M1 − u

, ΘM2
= Θ1 +

1

γ̂
ln

T − u
M2 − u

,

and the inequality T0 < M1 has been taken into account.
Figures 3 and 4 schematically depict the graphs of the functions xΘ

3 (t) and ϕ(t) for t ∈ [0,Θ].
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ON THE EXISTENCE OF A PERIODIC MODE 1081

Fig. 3. Graph of the function xΘ
3 (t). Fig. 4. Graph of the function ϕ(t).

It follows from the preceding that system (16) is actually a linear time-varying system of the
form

ẋ(t) = A(t)x(t) + f(t), (18)

where x = (x1, x2)T and

A(t) =

 0 1

− k
m
− α

lm
ϕ(t) − β

m

 , f(t) =

(
0

α

lm
∆ϕ(t)− g

)
, (19)

the matrix A(t) and the column vector f(t) being continuous Θ-periodic functions; i.e., in particu-
lar, A(t+ Θ) = A(t) and f(t+ Θ) = f(t) for each t ≥ 0.

It is well known [5, p. 215] that if the linear homogeneous Θ-periodic system

ẋ(t) = A(t)x(t) (20)

does not have a nontrivial Θ-periodic solution, then the corresponding inhomogeneous system (18)
has a unique Θ-periodic solution. Now note that if the homogeneous system (20) is asymptotically
stable, then it cannot have a nontrivial Θ-periodic solution.

Let us obtain conditions under which the linear homogeneous system (20) is asymptotically
stable. To this end, we use the method proposed in [5, p. 197]. Consider system (20) with coefficient
matrix A(t) given by (19). This system is equivalent to the second-order differential equation

ÿ(t) + aẏ(t) + b(t)y(t) = 0, (21)

where y(t) = x1(t), ẏ(t) = x2(t), and

a =
β

m
, b(t) =

α

lm
ϕ(t) +

k

m
.

Let us make the standard change of dependent variable y = e−at/2z in Eq. (21); then

ẏ =

(
ż − a

2
z

)
e−at/2 and ÿ =

(
z̈ − aż +

a2

4
z

)
e−at/2.

Therefore, this change of variable reduces Eq. (21) to the form

z̈(t) + p(t)z(t) = 0, (22)

where
p(t) =

α

lm
ϕ(t) +

k

m
− β2

4m2
.
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According to the results in the monograph [5, p. 202], if the Θ-periodic function p(t) satisfies the
inequalities

p(t) ≥ 0, 0 < Θ

Θ∫
0

p(t) dt ≤ 4,

then all solutions z(t) of Eq. (22) are bounded together with their first derivatives. However, the
boundedness of z(t) and ż(t) implies that the solutions y(t) of Eq. (21), together with their deriva-
tives ẏ(t), tend to zero, and consequently, system (20) is asymptotically stable. Since E1≤ϕ(t)≤E2,
we obtain a sufficient condition for system (20) with coefficient matrix A(t) given by (19) to be
asymptotically stable in the form

α

lm
E1 +

k

m
− β2

4m2
> 0,

α

lm
E2 +

k

m
− β2

4m2
≤ 4

Θ2
. (23)

Consequently, the linear inhomogeneous system (18) has a unique Θ-periodic solution under
condition (23). We denote this solution by xΘ(t) = (xΘ

1 (t), xΘ
2 (t))T.

Thus, we have proved the following assertion.

Theorem 1. Let the parameters u, u, Θ1 , and Θ of the programmed control (9) for system (4)
satisfy the following conditions:

1. One has the inequalities

M1 < T =
u(1− e−γ(Θ−Θ1)/α) + u(1− e−γΘ1/α)e−γ(Θ−Θ1)/α

1− e−γΘ/α
,

A2 > T =
u(1− e−γΘ1/α) + u(1− e−γ(Θ−Θ1)/α)e−γΘ1/α

1− e−γΘ/α
.

2. Condition (23) holds.
Then there exists a unique periodic motion xΘ(t) = (xΘ

1 (t), xΘ
2 (t), xΘ

3 (t))T in system (4) with the
programmed control (9). Furthermore, xΘ

3 (0) = T .

3. PERIODIC MODE IN THE SYSTEM WITH A FEEDBACK

Let us return to the original problem (see Sec. 2) of constructing a feedback control (3) ensuring
the existence of a periodic mode in the closed-loop system (5). The main idea for solving this problem
is to choose the parameters of the feedback (3) based on the results in the paper [1] guaranteeing the
existence of an oscillatory mode in the closed-loop system (5) and also based on the programmed
control (9) calculated in accordance with Theorem 1 and the periodic solution xΘ(t) produced by
this control.

Thus, the following assertion holds based on Theorem 1 and sufficient conditions obtained in [1]
for the existence of oscillatory modes.

Theorem 2. Assume that
1. The parameters of system (4) satisfy the inequality

∆− mg + k∆

k + αE1/l
> 0.

2. The spectrum of each of the matrices 0 1

−kl + αE1

m
− β
m

 ,

 0 1

−kl + αE2

m
− β
m


lies on the negative half-axis and is simple.

DIFFERENTIAL EQUATIONS Vol. 57 No. 8 2021
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3. The parameters u, u, Θ1 , and Θ satisfy the conditions in Theorem 1 and, in addition,

u < M1, u > A2.

4. The numbers y1 = xΘ
1 (0) and y2 = xΘ

1 (Θ1) satisfy the inequalities

y1 > ∆− mg + k∆

k + αE1/l
, y2 < ∆− mg + k∆

k + αE2/l
,

where xΘ(t) = (xΘ
1 (t), xΘ

2 (t), xΘ
3 (t))T is the periodic solution of system (4) supplemented by

the programmed control (9) with parameters u, u, Θ1 , and Θ.
5. The following inequalities hold for system (4) supplemented by the feedback (3) with parame-

ters u, u, y1 , and y2 :

E2

E1

− βC2
3

t̄∗1
< 1,

(
m2g2

k
+
αE2

l
∆2

)
ν0 < k

(
∆ +

mg

k

)2

,

where

t̄∗1 = min

{
1

C2

√
2m

, (y2 − y1)

√
E1m

2E2C1

}
,

C1 = k

(
y1 +

mg

k

)2

+
α

l
E2(y1 −∆)2, C2 =

E2

mE1

(
β√
m

+
√
k +

√
α

l
E2

)
,

C3 =

√
E1

E2(k + αE2/l)
, ν0 = max{Hmax/H0, 2}, H0 =

4mg∆E1

k + E1

,

Hmax =

(
E2

E1

)2

H̄∗, H̄∗ = max{H∗, H̄}, H̄ = max

{
m2g2

k
+
α

l
E2∆2, k

(
∆ +

mg

k

)2}
,

H∗ = max

{(
2βC3C4/t̄

∗
1

1− E2/E1

+ βC2
3/t̄
∗
1

)2

,
C2

4

C2
3

}
, C4 =

mg

k
+ ∆ + y1;

6. The conditions
0 < xΘ

1 (t0) < ζ+, xΘ
2 (t0) = 0, t0 < ΘA2

,

are satisfied at time t0 , where ζ+ is the positive root of the quadratic trinomial

p(ζ) ≡ kν0

(
ζ +

mg

k

)2

+
αν0E2

l
(ζ −∆)2 − k

(
∆ +

mg

k

)2

.

Then the solution x̃(t) of the closed-loop system (5) with the initial conditions

x̃1(0) = xΘ
1 (t0), x̃2(0) = xΘ

2 (t0), x̃3(0) = xΘ
3 (t0) (24)

is an oscillatory mode with the parameters t∗1 , t∗2 , y1 , and y2 , where

t∗1 = (y2 − y1)
√
m/Hmax.

(An algorithm for calculating the constant t∗2 is rather awkward ; it is presented in full in [1].)
Further, the solution x̃(t) satisfies the identity x̃(t) ≡ xΘ(t+ t0) for t ∈ [0, t∗1].

Now let us show that, under certain additional conditions on the constant t∗1, the oscillatory
mode x̃(t) of system (5) with the initial conditions (24) is actually a periodic mode. To this end,
it suffices to establish that if the parameters u, u, y1, and y2 of the bang-bang feedback control (3)
satisfy the assumptions of Theorem 2, then, under the initial conditions (24), the control switches
occur on the interval [0,Θ] at t1 = Θ1 − t0 and t2 = Θ− t0.
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Thus, let the assumptions of Theorem 2 be satisfied, and let the inequality

ΘA2
− t0 < t∗1 ≤ Θ1 − t0 (25)

hold for t∗1. Since the solution x̃(t) of the closed-loop system (5) with the initial conditions (24) is
oscillatory, we have the inequality

x̃1(t) < y2, t ∈ [0,ΘA2
− t0]. (26)

It follows by Theorem 2 that the identity x̃(t) ≡ xΘ(t+ t0) holds for t ∈ [0,ΘA2
− t0].

Further, consider the behavior of the functions x̃1(t) and x̃2(t) on the interval [ΘA2
− t0,Θ1 − t0].

First, note that, by the definition of the feedback (3), the identities x̃1(t) ≡ xΘ
1 (t + t0)

and x̃2(t) ≡ xΘ
2 (t+t0) remain valid on the interval [ΘA2

−t0,Θ1−t0] until time t∗ ∈ [ΘA2
−t0,Θ1−t0]

such that x̃1(t∗) = xΘ
1 (t∗ + t0) = y2. Let us show that xΘ

1 (t + t0) 6= y2 for t ∈ [ΘA2
− t0,Θ1 − t0).

Since ϕ(t + t0) ≡ E2 on the interval [ΘA2
− t0,Θ1 − t0], it follows that the functions xΘ

1 (t + t0)
and xΘ

2 (t+ t0) identically coincide on this interval with the respective components x̂1(t) and x̂2(t)
of the solution x̂(t) of the linear time-invariant system

ẋ1(t) = x2(t),

ẋ2(t) = −
(
k

m
+

α

lm
E2

)
x1(t)− β

m
x2(t)− g +

α

lm
∆E2

(27)

with the initial conditions

x1(ΘA2
− t0) = xΘ

1 (ΘA2
), x2(ΘA2

− t0) = xΘ
2 (ΘA2

). (28)

By condition 2 in Theorem 2, the coefficient matrix of system (27) is stable and has simple spectrum.
Let us show that the solution x̂(t) of this system with the initial conditions (28) satisfies the
relation x̂1(t) 6= y2 for t ∈ [ΘA2

− t0,Θ1 − t0).
Indeed, the first component x1(t) of each solution x(t) of system (27) has the property

x1(t)→ x∗1 > y2 as t→ +∞, (29)

where x∗1 = ∆ − (mg + k∆)/(k + αE2/l); the convergence in (29) was proved in [1], while the
inequality in (29) is the second inequality in condition 4 in Theorem 2.

Consider the equation
x̂1(t) = y2, t ≥ ΘA2

− t0. (30)

Since the vector function (x̂1(t), x̂2(t))T on the interval [ΘA2
− t0,Θ1 − t0] is a solution of sys-

tem (27) whose coefficient matrix has negative distinct eigenvalues λ1 and λ2, we have the repre-
sentation

x̂1(t) = C1e
λ1t + C2e

λ2t + x∗1,

where C1 and C2 are some constants, which are not zero simultaneously, because

x̂1(ΘA2
− t0) < y2 < x∗1.

Therefore, Eq. (30) can be written in the form

C1e
λ1t + C2e

λ2t = y2 − x∗1, where λ1 < 0, λ2 < 0, C2
1 + C2

2 > 0, t > ΘA2
.

Note that the function on the left-hand side in this equation may have at most one point of extremum
for t > 0, and hence Eq. (30) may have at most one root by virtue of property (29). Consequently,
the equation xΘ

1 (t+ t0) = y2 may have at most one root on the interval t ∈ [ΘA2
− t0,Θ1− t0]. Since

the function xΘ
1 (t+ t0) takes the value y2 at the point t = Θ1 − t0 by a condition in Theorem 2, we

conclude that xΘ
1 (t+ t0) 6= y2 for t ∈ [ΘA2

− t0,Θ1 − t0). Thus,

x̃1(t) 6= y2, t ∈ [ΘA2
− t0,Θ1 − t0), and x̃1(Θ1 − t0) = y2. (31)
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Now assume that the condition
ΘM1

−Θ1 < t∗1 ≤ Θ2 (32)

is additionally satisfied for t∗1. Since the solution x̃(t) of the closed-loop system (5) with the initial
conditions (24) is an oscillatory mode, we have the inequality x̃1(t) > y1, t ∈ [Θ1 − t0,ΘM1

− t0].
It follows in view of relations (31) and (26) that

x̃(t) ≡ xΘ(t+ t0) for t ∈ [0,ΘM1
− t0]. (33)

Now consider the behavior of the functions x̃1(t) and x̃2(t) on the interval [ΘM1
− t0,Θ − t0].

By analogy with the preceding argument, note that the identities x̃1(t) ≡ xΘ
1 (t + t0)

and x̃2(t) ≡ xΘ
2 (t+t0) remain valid on the interval [ΘM1

−t0,Θ−t0] until time t∗ ∈ [ΘM1
−t0,Θ−t0]

such that x̃1(t∗) = xΘ
1 (t∗ + t0) = y1. Let us show that xΘ

1 (t + t0) 6= y1 for t ∈ [ΘM1
− t0,Θ − t0).

Since ϕ(t + t0) ≡ E1 on the interval [ΘM1
− t0,Θ − t0], it follows that the functions xΘ

1 (t + t0)
and xΘ

2 (t+ t0) identically coincide on this interval with the respective components x̂1(t) and x̂2(t)
of the solution x̂(t) of the linear time-invariant system

ẋ1(t) = x2(t),

ẋ2(t) = −
(
k

m
+

α

lm
E1

)
x1(t)− β

m
x2(t)− g +

α

lm
∆E1

(34)

with the initial conditions

x1(ΘM1
− t0) = xΘ

1 (ΘM1
), x2(ΘM1

− t0) = xΘ
2 (ΘM1

). (35)

By condition 2 in Theorem 2, the coefficient matrix of system (34) is stable and has simple spectrum.
Let us show that the solution x̂(t) of this system with the initial conditions (35) satisfies the
relation x̂1(t) 6= y1 for t ∈ [ΘM1

− t0,Θ− t0).
Indeed, the first component x1(t) of each solution x(t) of system (34) has the property

x1(t)→ x∗∗1 < y1 as t→∞, (36)

where x∗∗ = ∆− (mg+k∆)/(k+αE1/l); the convergence in (36) was proved in the paper [1], while
the inequality is the first inequality in condition 4 in Theorem 2.

Consider the equation
x̂1(t) = y1, t ≥ ΘM1

− t0. (37)

Since the vector function (xΘ
1 (t), xΘ

2 (t))T on the interval [ΘM1
− t0,Θ − t0] is a solution of sys-

tem (34) whose coefficient matrix has distinct negative eigenvalues λ′1 and λ′2, one has the represen-
tation

x̂1(t) = C1e
λ′
1t + C2e

λ′
2t + x∗∗1 ,

where C1 and C2 are some constants, which are not zero simultaneously, because

x̂1(ΘM1
− t0) > y1 > x∗∗1 .

Therefore, Eq. (37) can be written in the form

C1e
λ′
1t + C2e

λ′
2t = y1 − x∗∗1 , where λ′1 < 0, λ′2 < 0, C2

1 + C2
2 > 0, t ≥ ΘM1

− t0.

Note that the function on the left-hand side in this equation may have at most one point of extremum
for t > 0, and then Eq. (37) may have at most one root by virtue of property (36). Consequently,
the equation xΘ

1 (t+ t0) = y1 may have at most one root on the interval t ∈ [ΘM1
− t0,Θ− t0]. Since

the function xΘ
1 (t+ t0) takes the value y1 at the point t = Θ− t0 by a condition in Theorem 2, we

conclude that xΘ
1 (t+ t0) 6= y1 for t ∈ [ΘM1

− t0,Θ− t0). Thus,

x̃1(t) 6= y1, t ∈ [ΘM1
− t0,Θ− t0), and x̃1(Θ− t0) = y1.
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This, together with identity (33), implies that

x̃(t) ≡ xΘ(t+ t0) for t ∈ [0,Θ− t0]. (38)

Let us impose one more constraint on the constant t∗1; namely, let

t∗1 > t0. (39)

Since the solution x̃(t) of the closed-loop system (5) with the initial conditions (24) is an oscillatory
mode, it follows that

x̃1(t) < y2, t ∈ [Θ− t0,Θ]. (40)

This, together with identity (38), implies that the switching times of the bang-bang control (3) and
the programmed control (9) for t ∈ [0,Θ] coincide. Then one has the identity x̃(t) ≡ xΘ(t + t0)
on this interval, and this identity remains valid for all t ≥ 0 by virtue of the Θ-periodicity of the
function xΘ(t+ t0).

Consequently, the oscillatory mode x̃(t) of system (5) with the initial conditions (24) is a periodic
mode. Thus, we have proved the following assertion about the existence of a periodic mode in the
closed-loop system (5).

Theorem 3. Let the assumptions of Theorem 2 be satisfied, and let inequalities (25), (32),
and (39) hold. Then there exists a periodic mode with the initial conditions (24) in the closed-loop
system (5).

4. SIMULATION RESULTS

Consider system (1) with the parameters

m = 0.018, β = 0.7, k = 0.07, α = 1.32 · 10−8, l = 0.2, ∆ = 0.009, γ = 1.76 · 109,

M1 = 24.3, M2 = 52.7, A1 = 32.8, A2 = 57.5, E1 = 3 · 108, E2 = 8 · 108.

Using the results in the present paper, we can calculate the parameters

u = 80, u = 1, y1 = 0.00172, y2 = 0.0063

of the feedback (3) for which there exists a periodic motion (Fig. 5) with period Θ = 0.2 in the
corresponding closed-loop system with E(0) = 4.73 · 108 and with the initial conditions

y(0) = 0.0032, ẏ(0) = 0, T (0) = 41.067.

Here the bang-bang control switching times are t1 = Θ1 − t0 and t2 = Θ − t0, where Θ1 = 0.1
and t0 = 0.036.

CONCLUSIONS

The paper considers a mathematical model of a thermal energy harvester [1] in the form of the
controlled nonlinear dynamical system (1) whose coefficients are positive numerical parameters.
The main problem is to choose a control algorithm ensuring the occurrence of a periodic motion in
the closed-loop system. As a control algorithm, it is proposed to use output feedback with feedback
operator in the form of a bang-bang hysteresis control. As a result, sufficient conditions are obtained
for the coefficients and initial values of the state variables of system (1) and for the parameters of
the controller (3) ensuring the occurrence of a periodic mode in the closed-loop system.
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Fig. 5. Graphs of the functions y(t), T (t), and E(t) corresponding to a periodic mode of system (1).
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