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Abstract—Magnetically actuated satellite moving on a Sun-synchronous orbit is considered. The satellite
maintains one axis attitude towards the Sun while rotating around this direction. Stabilization algorithm uti-
lizes information about the required direction and rotation rate. Evolutionary equations are used to find equi-
librium positions and analyze their stability. Conditions on the satellite inertia moments and control param-
eters are established for different equilibria, including the required motion. Numerical simulation with dif-
ferent disturbing sources is performed to verify stable equilibria existence.
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INTRODUCTION
Stabilization towards the Sun is an important mode

employed on the majority of spacecraft. Stabilization
accuracy requirements are relatively low in this case.
Few degrees discrepancy of solar panels attitude rela-
tive to the Sun direction provides sufficient illumina-
tion conditions for batteries charge. Magnetorquers
are well suited for this purpose. Their inherent inferior
performance compared to the reaction wheel does not
make significant difference. At the same time the atti-
tude control system power consumption is reduced,
reaction wheels lifetime saved and saturation avoided.
Prominent magnetic control system drawback is the
restriction on the control torque direction. Although
the satellite is generally controllable [1, 2], this restric-
tion is hard to accommodate in practice. However, in
the case of uniaxial orientation to the Sun, rotational
stabilization [3] can be used, which has been used
together with the magnetic system since the launch of
the Tiros-II satellite in 1960. In this case, the own
dynamic properties of the satellite complement the
capabilities of the control system. 

Three main attitude tasks—spin rate control, wob-
ble suppression, and spin axis reorientation—are fully
controllable by magnetorquers [4, 5], although simpli-
fied approaches for the control construction for each
channel are also viable [6–8]. The approach that does
not require separation of control modes is based on
calculating the difference between the current and
required angular momenta of the satellite [9], which
can be used in case of failure of some of the magnetic
coils [10]. Separately we should mention the special
algorithms that take into account the specifics of the
information received from the orientation sensors. For

example, in [11], the readings of the solar sensor and
magnetometer are used to stabilize the satellite in a
sun-synchronous orbit. In [12], the difference in the
current collection of solar panels is used, and in [13],
the direction to the Sun. The derivative of this direc-
tion is used in Sdot control [14–16] which is inspired
by the Bdot law. Another modification of this basic
control law is suggested in [17].

Present paper investigates the satellite dynamics
under the action of Prisma satellite control law [18].
Evolutionary equations [19] are averaged [20, 21] to
facilitate stability analysis for a satellite moving on a
Sun-synchronous orbit. Maximum moment of inertia
stabilization is verified to be stable. However, inclined
attitude of the rotation axis relative to the Sun direc-
tion turned out be stable under certain conditions on
the satellite inertia relations and control parameters.
Likewise, specific conditions are established for the
stabilization of the minimum moment of inertia axis in
the required direction. Numerical simulation exam-
ples are provided for these situations.

1. EQUATIONS OF MOTION
Axisymmetric satellite moving on a circular orbit is

considered below. The satellite is subjected to the con-
trol torque only.

Evolutionary Equations
Let us introduce a reference frame associated with

the center of the Earth, the third axis of which is
directed to the Sun. This system will be considered
inertial on time intervals of a few hours. In the study of
its motion, the OZ1Z2Z3 orientation of the satellite is
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described with respect to this refrerence frame. Since
only the uniaxial orientation of the satellite is of inter-
est, the direction of the first and second axes can be
chosen arbitrarily.

Satellite motion is described by the evolutionary
equations organized in two groups. The first group
includes the angular momentum vector magnitude 
and its attitude angles  and  that describe the
momentum vector motion in the  frame (Fig. 1).
Reference frame  related to the angular
momentum of the satellite is introduced. Its third
axis is aligned with the momentum vector. The 
axis is defined by the rotation  around the  axis.
The  axis is derived after the rotation  around

 axis (Fig. 1).
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Second group of variables describes the satellite
attitude relative to the angular momentum reference
frame. Satellite-fixed frame  is introduced
using the principal central axes of inertia of the satel-
lite. Its attitude relative to the  frame is repre-
sented by the Euler angles , ,  (rotations sequence
3-1-3).

The transition matrices  →  and  → 
are correspondingly
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Evolutionary equations of the satellite with sym- where the control dipole moment  and the geomag-m
Fig. 1. Angular momentum attitude in the inertial space.
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(3)

where the control torque components  are defined
in the  frame. Only three variables are relevant for
the stabilization analysis. The angular momentum
magnitude represents the rotation rate of a spinning
satellite. Angle  defines the discrepancy between the
angular momentum vector (the  axis) and the Sun
direction (the  axis). Nutation angle  defines the
deviation of the axis of symmetry  from the angular
momentum vector. This axis should be stabilized
towards the Sun in the following analysis. Averaging
technique is applied to remove irrelevant variables in
the equations of motion [22].

Attitude Control Algorithm
The control torque acting on the satellite is

= diag( , , )A A CJ
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netic induction vector  should be defined to obtain
complete expressions for the equations (3).

The control dipole moment suggested in [18] for
the Prisma satellite is used. This control utilizes the
difference between the current satellite angular veloc-
ity  and the required one  given by the expression

The first term in  drives the angular velocity
vector towards the Sun direction in the satellite refer-
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ence frame . Second term ensures that the rotation
occurs around  axis. Parameter  defines relative
contribution of two terms. Parameter  influences
the resulting rotation rate which is anticipated to settle
at . The control dipole moment is

(4)

where  is a unit geomagnetic induction vector,  is a
control gain.

Geomagnetic Field Model

Geomagnetic field representation requires refer-
ence frame associated with the Earth. Frame 
is introduced for this purpose. Its first axis is directed
to the ascending node of the satellite orbit, third axis is
aligned with the Earth rotation axis. This reference
frame will be used for the numerical simulation of the
satellite motion.

Geomagnetic field is represented in the 
frame which results in a rotation of  around

 axis by the angle . This angles is defined as

where  is the orbit inclination. The induction vector
moves uniformly in the  frame and circumscribes a
cone during one orbit revolution. The expression for
the induction vector is [24, 25]:

(5)

where  is the argument of latitude, 
is constant orbital rate, and  is the induction vector
magnitude. This simple model is used in the averaged
equations of motion, whereas numerical simulation
utilizes IGRF model [25].

2. EVOLUTIONARY EQUATIONS STABILITY
To apply the averaging method, it is necessary to

separate the variables into fast and slow varying. In the
absence of a control torque, the angular momentum in
the inertial space is conserved, which is expressed in
the constancy of its magnitude and orientation angles
in equations (3). The nutation angle θ also remains
constant. The satellite undergoes a regular precession,
in which the angles γ and υ change rapidly. When the
control system is acted upon, the constants in the
unperturbed motion begin to change. If the control
value is sufficiently small, these variables can be con-
sidered slow and equations (3) can be averaged over
the fast variables and time.
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To formalize the concept of slow variation, the
equations of motion should be written in a dimension-
less form. For this purpose, we use the orbital period
as a measure of time in equations (3) and, accordingly,
the argument of latitude is used instead of time; we
refer the angular momentum to its unperturbed value
L = L0l and introduce a small parameter that charac-
terizes the variation of the angular momentum over
one orbital revolution ε = kB0/ω0C. The dimension-
less equations are written as follows:

(6)

where , , dimensionless

control torque components are . Parameters 
are large compared to .

Control torque expression is required for further
analysis. The torque in the satellite frame is

Dimensionless induction vector is introduced as
. This is a unit vector in the simplified geo-

magnetic model. Equations (6) operate with the con-
trol torque expression in the  frame,

(7)

where . The angular velocity vector in the
 frame is derived from the angular momentum as

. Drawing upon the momentum expression
in the  frame  and utilizing the transi-
tion matrix , the velocity is expressed as

(8)
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Evolutionary equations describe the angular
momentum motion and the nutation angle variation
after equations (7)–(8) are averaged over the fast vari-
ables , , and . However, the induction vector

 is not yet defined. This vector is derived in the

 frame whereas the satellite motion is described in
the  frame. Averaging over  and designating the
induction vector components in the  frame as ,
without averaging over , the equations of motion
become

(9)

Notations are retained for the averaged variables.
Parameter  defines the goal angular
momentum magnitude.

Motion on a Sun-Synchronous Orbit
Further analysis requires specific expressions for

the components of the induction vector. For this pur-
pose, it is necessary to determine the transition matrix
from the OY to the OZ frame. Recall that the third axis
in the OZ frame is oriented to the Sun, while the other
two axes are chosen arbitrarily. The OY frame, on the
other hand, is uniquely defined. To obtain the transi-
tion between OY and OZ, we set the orientation of the
direction vector to the Sun in the OY frame. For this
purpose, we can apply the same approach as in deter-
mining the orientation of the angular momentum vec-
tor in inertial space and introducing the OL frame.
Specifically, setting the orientation of the direction to
the Sun in the OY frame by the angles ρS and σS as
shown in Fig. 1, we set the transition matrix QS

between the OY and OZ frame in the same way as in
expression (1).

The induction vector components in the  frame

 contain constant elements of the

transition matrix  or, alternatively, trigonometric
functions of constant angles , . This makes result-
ing averaged equations cumbersome and unsuitable
for the stability analysis. Compact equations may be
obtained for the dawn-dusk Sun-synchronous orbit.
Geomagnetic induction vector components (5) are
simplified for ,  since .
Next, axes  and  almost coincide. Indeed, the
Sun direction  is almost perpendicular to the orbital
plane on a dawn-dusk orbit. Likewise,  is directed
perpendicular to the orbit plane if  and
almost perpendicular for a near polar orbit.

Finally, assuming that reference frames  and 
coincide and , , the induction vector

is expressed in the  frame as .

Adopting the transformation  and averag-
ing (9) over the argument of latitude final evolutionary
equations are obtained

(10)

Stability Analysis
Evolutionary equations (10) are relatively compact

and admit stability analysis. Clearly, the equilibrium
positions are  and . However, some
inclined equilibrium configurations exist for  and .
Second and third equations in (10) define the corre-
sponding equilibria. The first equation defines the
equilibrium angular momentum magnitude. It
depends on the equilibrium for  and . All cases are
analyzed below.
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equation for the rotation rate equilibrium calculation,
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sion is substituted into the second and third equations
in (10). Linearization around equilibrium position
provides

The equilibrium is stable if . The required
rotation around the maximum moment of inertia is
stable. Stability of the rotation around the minimum
moment of inertia is ensured if

(11)

For example  leads to the condition
, while  leads to . Generally,

stabilization of the axis of the minimum moment of
inertia is possible if its relation to the maximum one is
not too small. Allowed difference between the mini-
mum and maximum moments increases as parameter

 decreases.
2. Equilibrium ,  (  is directed out of

the Sun).
The angular momentum magnitude equilibrium

value is , so  is required in this case.
Linearized second equation in (10) is

Taking into account  the equilibrium is identi-
fied as unstable.

3. Equilibrium ,  (  is directed out of
the Sun).

The equilibrium angular momentum is
, so . Linearized equations for the

angles are

Second equation establishes the stability condition

For example  leads to  which is not
feasible due to the inertia tensor properties. Parameter

 leads to . The satellite should have spe-
cific mass distribution and relatively high control
parameter  for the stabilization opposite to the Sun
direction.

Three collinear equilibrium configurations stability
is summarized as follows. Control parameter  should
be constrained to 1–2, so Case 3 stability is avoided.
Rotation should be performed around the maximum
moment of inertia axis. If rotation around the minimum
inertia axis is necessary, the moment of inertia should
not be considerably smaller than the maximum one.
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4. Consider an inclined equilibrium arising from
the third equation in (10)
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only if . Together with results of Cases 1–3 this
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behavior.
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Fig. 2. Stabilization in the required direction.

Time, h

200

150

100

50

0 2.50.5

 e
3 a

xi
s a

tti
tu

de

2.01.51.0

0

0.6
0.4
0.2

0.8

2.22.12.01.91.81.7 2.3 2.4

1.5
1.0
0.5

–0.5

2.50.50

�
, d

eg
/s

2.01.51.0
–1.0

0
�1

�3

�2
Here . The equation
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Stability is observed if  which means

. This condition is satisfied if 

according to (16). Therefore, (16) ensures stability for
 and .

Comparison of conditions (16) and (11) reveals the
border values of parameters that define stability of
either the required stabilization of the minimum
moment of inertia axis, or stability of the inclined con-
figuration.

Stability analysis is summarized below.
— Parameter  should lie between 1 and 2.
— It is preferable to stabilize the maximum

moment of inertia axis.
— Stabilization of the minimum moment of inertia

axis is possible if . Namely, this relation is

satisfied if  and .
Alternatively, if  and  the satellite

stabilizes in the inclined position.

3. NUMERICAL EXAMPLES
Numerical simulation is performed with various

disturbances. Following satellite and environment
parameters and assumptions are adopted:

— Orbit inclination 97°, altitude 550 km, eccen-
tricity 0.01, right ascension of ascending node 90°;
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— Sun direction in the  frame is defined by
angles  = 80° and  = 10°. Therefore, the Sun
direction is close to the  axis. Likewise, the orbit
normal is close to  with chosen orbit inclination
and right ascension;

— Control gain  = 600 N m s/T, reference rota-
tion rate  = 0.5 °/s.

— Aerodynamic torque is calculated as a sum of
torques acting on the sides of a satellite:

satellite is a cube with 30 cm sides;
center of mass displacement relative to the center of

pressure is 2, 3, and 4 cm along the satellite reference
frame axes;

atmosphere density is 1.8 × 10–13 kg/m3 (average
solar activity);

— Residual dipole moment 2 × 10–2 A m2 has con-
stant and normally distributed components;

— Sun direction estimation accuracy is 1°, angular
velocity estimation accuracy is 10–4 s–1 (constant and
normally distributed noise);

— Unknown disturbance sources are modelled as a
constant and periodic torque with overall value
approximately two times less than the gravitational
torque value.

Figure 2 provides a numerical simulation example
for the satellite with inertia moments 1.0, 0.8, 1.3 kg m2,
parameter  = 1. Rotation occurs around the maximum
moment of inertia which together with μ = 1 ensures
stability of the required attitude.

Angular velocity components are designated  in
Fig. 2. Figure 3 presents an example of stabilization in
the opposite direction. Inertia moments of the satellite
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Fig. 3. Stabilization in the opposite direction.
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are 1.0, 0.8, 1.6 kg m2, parameter =3. Therefore,
Case 2 conditions are satisfied (  and ).

Note that the initial data are chosen in such a way
that the satellite is initially close to stabilization in the
opposite direction. The same initial data can be seen
in Fig. 2, where, however, the satellite has stabilized in
the required direction.

Finally Fig. 4 presents an example of inclined sta-
bilization with inertia moments 1.0, 0.8, 0.3 kg m2 and
parameter  = 1.

The satellite should settle at the rotation inclined
by the angle ° relative to the Sun direction and
angular momentum vector according to (13). Rotation
around  axis should occur with approximately 0.75 °/s
rate according to (14). Since inertia moments  and 

μ
1.5C A> 3μ =

μ

θ ≈ 60

3e
A B
are different, their average value 0.9 kg m2 may be used
in expressions (13) and (14) for the inertia moment .

CONCLUSIONS

Magnetically actuated satellite single axis stabiliza-
tion towards the Sun is considered. The control builds
upon the current satellite velocity, Sun direction in the
satellite reference frame, and the required rotation
rate. Averaged evolutionary equations of motion are
utilized to identify satellite equilibrium positions.
Apart from obvious positions of the satellite stabilizing
along the Sun direction, both in the required and
opposite directions, an inclined attitude is derived.
Analysis reveals the satellite inertia and control
parameters that ensure different equilibrium stability.

A
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Stabilization of the maximum moment of inertia axis
towards the Sun is always possible. Conditions for the
stabilization of the minimum moment of inertia axis
are derived. Requirements for the inertia moments
and control parameter are found that ensure avoid-
ance of the unwanted equilibria stability. Numerical
simulation examples are provided for different stabili-
zation cases with various disturbance sources.
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