Skip to main content
Log in

Spatial Structure of Polarization Jet according to NorSat-1 and Swarm Satellite Data

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

In this work, we study the spatial structure of the polarization jet based on data from the NorSat-1 and Swarm ionospheric satellites during a geomagnetic storm. A comparative analysis of the electron density and temperature dependence on the invariant latitude is carried out simultaneously according to measurements of the NorSat-1 and Swarm C satellites during their crossing of the polarization jet. The dependence of the invariant latitude of polarization jet on the auroral geomagnetic activity and on the magnetic local time is confirmed. A double structure of polarization jet is discovered as well as small-scale spatial structures inside the jet with a size of 0.1°–0.2°. It is found that spatial structures are not local and are extended in longitude for at least 2 h of magnetic local time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gal’perin, Yu.I., Ponomarev, V.N., and Zosimova, A.G., Direct measurements of ion drift velocity in the upper ionosphere during a magnetic storm. Part 1: Experiment description and some results of measurements during magnetically quiet time, Kosm. Issled., 1973, vol. 11, no. 2, pp. 273–283.

    ADS  Google Scholar 

  2. Gal’perin Yu.I., Ponomarev V.N., and Zosimova, A.G., Direct measurements of ion drift velocity in the upper ionosphere during a magnetic storm. Part 2: Results of measurements during the November 3, 1967 magnetic storm, Kosm. Issled., 1973, vol. 11, no. 2, pp. 284–296.

    ADS  Google Scholar 

  3. Spiro, R.W., Heelis, R.A., and Hanson, W.B., Rapid subauroral ion drifts observed by Atmosphere Explorer C, Geophys. Rev. Lett., 1979, vol. 6, no. 8, pp. 657–660. doi i008p00657https://doi.org/10.1029/GL006

  4. Anderson, P.C., Heelis, R.A., and Hans, W.B., The ionospheric signatures of rapid subauroral ion drifts, J. Geophys. Res., 1991, vol. 96, no. A4, pp. 5785–5792. https://doi.org/10.1029/90JA02651

    Article  ADS  Google Scholar 

  5. Foster, J.C. and Burke, W.J., SAPS: A new categorization for subauroral electric fields, EOS Trans. AGU, 2002, vol. 83, pp. 293–294. https://doi.org/10.1029/2002EO000289

    Article  Google Scholar 

  6. Foster, J.C. and Vo, H.B., Average characteristics and activity dependence of the subauroral polarization stream, J. Geophys. Res., 2002, vol. 107, no. A12, p. 1475. https://doi.org/10.1029/2002JA009409

    Article  Google Scholar 

  7. Bondar’, E.D., Khalipov, V.L., and Stepanov, A.E., Characteristics of a polarization jet as measured at the subauroral stations Yakutsk and Podkamennaya Tunguska, Sol.-Zemn. Fiz., 2005, no. 8, pp. 143–144.

  8. Khalipov, V.L., Stepanov, A.E., Kotova, G.A., and Bondar’, E.D., Position variations of the polarization jet and injection boundary of energetic ions during substorms, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 2, pp. 174–180. https://doi.org/10.1134/S0016793216020080

  9. Stepanov, A.E., Khalipov, V.L., Golikov, I.A., Bondar’, E.D., Polyarizatsionnyi dzhet: uzkie i bystrye dreify subavroral’noi ionosfernoi plazmy (Polarization Jet: Narrow and Fast Drifts of Subauroral Ionospheric Plasma), Yakutsk: Izd. Severo-Vost. Fed. Univ., 2017.

  10. Stepanov, A.E., Gololyubov, A.Yu., Khalipov, V.L., and Golikov, I.A., Variations in ionospheric parameters during the formation of a polarization jet, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 1, pp. 68–72. https://doi.org/10.1134/S001679322101014X

  11. Anderson, P.C., Carpenter, D.L., Tsuruda, K., et al., Multisatellite observations of rapid subauroral ion drifts (SAID), J. Geophys. Res., 2001, vol. 106, no. A12, pp. 29585–29599. https://doi.org/10.1029/2001JA000128

    Article  ADS  Google Scholar 

  12. Khalipov, V.L., Stepanov, A.E., Kotova, G.A., et al., Vertical plasma drift velocities in the polarization jet observation by ground Doppler measurements and driftmeters on DMSP satellites, Geomagn. Aeron. (Engl. Transl.), 2016b, vol. 56, no. 5, pp. 535–544. https://doi.org/10.1134/S0016793216050066

  13. Mishin, E.V., Nishimura, Yu., and Foster, J., SAPS/SAID revisited: A causal relation to the substorm current wedge, J. Geophys. Res. Space Phys., 2017, vol. 112, no. 8, pp. 8516–8535. https://doi.org/10.1002/2017JA024263

    Article  ADS  Google Scholar 

  14. Mishin, E.V. and Puhl-Quinn, P.A., SAID: Plasmaspheric short circuit of substorm injections, Geophys. Rev. Lett., 2007, vol. 34, id. L24101. https://doi.org/10.1029/2007GL031925

  15. Galperin, Yu.I., Polarization jet: characteristics and a model, Ann. Geophys., 2002, vol. 20, no. 3, pp. 391–404. https://doi.org/10.5194/angeo-20-391-2002

    Article  ADS  Google Scholar 

  16. de Keyser, J., Storm-time energetic particle penetration into the inner magnetosphere as the electromotive force in the subauroral ion drift current circuit, in Conference on Magnetospheric Current Systems, Washington, DC: American Geophys. Union, 2000, vol. 118, pp. 261–265. https://doi.org/10.1029/GM118p0261

  17. Newell, P.T. and Gjerloev, J.W., Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 2011, vol. 116, id. A12211. https://doi.org/10.1029/2011JA016779

  18. Nose, M., Iyemori, T., Sugiura, M., and Kamei, T., Geomagnetic Dst Index, Kyoto: World Data Center for Geomagnetism, 2015. https://doi.org/10.17593/14515-74000

    Book  Google Scholar 

  19. Hoang, H., Clausen, L.B.N., Roed, K., et al., The multi-needle Langmuir probe system on board NorSat-1, Space Sci. Rev., 2018, vol. 214, no. 4, p. 75. https://doi.org/10.1007/s11214-018-0509-2

    Article  ADS  Google Scholar 

  20. Knudsen, D.J., Burchill, J.K., Buchert, S.C., et al., Thermal ion imagers and Langmuir probes in the Swarm electric field instruments, J. Geophys. Res. Space Phys., 2017, vol. 122, no. 2, pp. 2655–2673. https://doi.org/10.1002/2016JA022571

    Article  ADS  Google Scholar 

  21. Chernyshov, A.A., Chugunin, D.V., Frolov, V.L., et al., In situ observations of ionospheric heating effects: first results from a joint SURA and NorSat-1 experiment, Geophys. Rev. Lett., 2020, vol. 47, no. 13, id. e2020GL088462. https://doi.org/10.1029/2020GL088462

  22. Yeh, H.C., Foster, J.C., Rich, F.J., and Swider, W., Storm time electric field penetration observed at mid-latitude, J. Geophys. Res., 1991, vol. 96, no. A4, pp. 5707–5721. https://doi.org/10.1029/90JA02751

    Article  ADS  Google Scholar 

  23. Sinevich, A.A., Chernyshov, A.A., Chugunin D.V., et al., Studying the small-scale structure of a polarization jet during the April 20, 2018 geomagnetic storm, Sol.-Terr. Phys., 2021, vol. 7, no. 1, pp. 17–26. https://doi.org/10.12737/stp-71202103

    Article  Google Scholar 

  24. He, F., Zhang, X.-X., Wang, W., and Chen, B., Double-peak subauroral ion drifts (DSAIDS), Geophys. Rev. Lett., 2016, vol. 43, pp. 5554–5562. https://doi.org/10.1002/2016GL069133

    Article  ADS  Google Scholar 

  25. Wei, D., Yu, Y., Ridley, A.J., et al., Multi-point observations and modeling of subauroral polarization streams (SAPS) and double-peak subauroral ion drifts (DSAIDS): A case study, Adv. Space Res., 2019, vol. 63, pp. 3522–3535. https://doi.org/10.1016/j.asr.2019.02.004

    Article  ADS  Google Scholar 

  26. Southwood, D.J. and Wolf, R.A., An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res., 1978, vol. 83, pp. 5227–5232.

    Article  ADS  Google Scholar 

  27. Karlsson, E., Marklund, G., Blomberg, L., and Malkki, A., Subauroral electric fields observed by Freja satellite: A statistical study, J. Geophys. Res., 1998, vol. 103, pp. 4327–4341. https://doi.org/10.1029/97JA00333

    Article  ADS  Google Scholar 

  28. Horvath, I. and Lovell, B.C., Investigating the development of double-peak subauroral ion drift (DSAID), J. Geophys. Res. Space Phys., 2017, vol. 122, pp. 4526–4542. https://doi.org/10.1002/2016JA023506

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the World Geomagnetism Data Center in Kyoto (http://wdc.kugi.kyotou.ac.jp), SuperMAG member organizations and national agencies (http://supermag. jhuapl.edu/info) for providing geomagnetic activity index data, and the European Space Agency for accessing data from the Swarm satellite mission (https://Swarm-diss.eo. esa.int/#Swarm/Advanced/Plasma_Data). We are also grateful to the University of Oslo and personally to Lasse Klausen for access to measurements with Langmuir probes by the NorSat-1 satellite (http://tid.uio.no/plasma/norsat).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sinevich.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinevich, A.A., Chernyshov, A.A., Chugunin, D.V. et al. Spatial Structure of Polarization Jet according to NorSat-1 and Swarm Satellite Data. Cosmic Res 59, 463–471 (2021). https://doi.org/10.1134/S0010952521060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521060095

Navigation