Skip to main content
Log in

Shock Compression of Titanium Hydride and Titanium, Tantalum, and Zirconium Deuterides

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of an experimental study of shock compression of titanium hydride (TiH2) and the deuterides of zirconium (ZrD2), tantalum (TaD0.8), and titanium (TiD2, TiD1.6, and TiD1.1) in the pressure range 30–220 GPa. The synthesis of titanium and zirconium deuterides from titanium and zirconium powders and tantalum deuterides from tantalum rods is described. Experiments to determine the Hugoniots of deuterides and hydrides were performed using the well-known reflection method. Shock-wave generators with explosive charges of different power were used for compression of samples. A description of the obtained experimental data using simple equations of state is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. E. Wigner and H. B. Huntington, “On the Possibility of a Metallic Modification of Hydrogen," J. Chem. Phys. 3, 764–770 (1935); https://doi.org/10.1063/1.1749590.

    Article  ADS  Google Scholar 

  2. R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington Transition to Metallic Hydrogen," Science 355, 715–718 (2017); DOI: 10.1126/science.aal1579.

    Article  ADS  Google Scholar 

  3. M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer, “Direct Observation of an Abrupt Insulator-to-Metal Transition in Dense Liquid Deuterium," Science 348(6242), 1455–1460 (2015); DOI: 10.1126/science.aaa7471.

    Article  ADS  Google Scholar 

  4. A. N. Utyuzh and A. V. Mikheenkov, “Hydrogen and Its Compounds under Extreme Pressures," Usp. Fiz. Nauk 187 (9), 953–970 (2017); DOI: 10.3367/UFNr. 2017.02.038077.

    Article  Google Scholar 

  5. N. M. Ashcroft, “Hydrogen Dominant Metallic Alloys: High Temperature Superconductors," Phys. Rev. Lett. 92, 187002 (2004); DOI: 10.1103/PhysRevLett.92.187002.

    Article  ADS  Google Scholar 

  6. A. V. Eletsky, A. N. Starostin, and M. D. Taran, “Quantum Corrections to Equilibrium Rate Constants of Inelastic Processes," Usp. Fiz. Nauk 175 (3), 299–313 (2005); DOI: 10.3367/UFNr.0175.200503d.0299.

    Article  Google Scholar 

  7. A. N. Starostin, V. K. Gryaznov, and Yu. V. Petrushevich, “Development of the Theory Momentum Distribution of Particles with Regard to Quantum Phenomena," Zh. Eksp.Teor. Fiz.152 (5), 1104–1112 (2017) [J. Exp. Theor. Phys.я125,я940–947 (2017); https://doi.org/10.1134/S106377611710017X].

    Article  ADS  Google Scholar 

  8. A. N. Golubkov, L. F. Gudarenko, M. V. Zhernokletov, A. A. Kayakin, and A. N. Shuikin, “Shock Compression of Vanadium Hydrides and Deuterides with Different Concentrations of Gas Atoms," Fiz. Goreniya Vzryva 53 (3), 72–81 (2017) [Combust., Expl., Shock Waves 53 (3),я309–318; (2017) https://doi.org/10.1134/S001050821703008X].

    Article  Google Scholar 

  9. R. F. Trunin, M. V. Zhernokletov, N. F. Kuznetsov, and Yu. N. Sutulov, “Shock Compression of Metal Hydrides," Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 11, 65–70 (1987).

  10. V. I. Mikheeva, Hydrides of Transition Metals(Izd. Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  11. J. Emsley, The Elements (Clarendon Press, Oxford, 1989).

    Google Scholar 

  12. M. Sakamoto, “Studies of Hydrogen Vibrations in Transition Metal Hydrides by Thermal Neutron Transmissions," J. Phys. Soc. Jpn.19 (10), 1862–1866 (1964); https://doi.org/10.1143/JPSJ.19.1862.

    Article  ADS  Google Scholar 

  13. M. M. Antonova, Properties of Metal Hydrides: Handbook (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  14. R. L. Beck, “Research and Development of Metal Hydrides: Summary Report for Oct. 1, 1958–Sept. 30, 1960," Report LAR-10 (Denver Univ. Denver Research Inst., 1960); https://doi.org/10.2172/4790244.

  15. P. E. Kalita, S. V. Sinogeikin, K. Lipinska-Kalita, T. Hartmann, X. Ke, Ch. Chen, and A. Cornelius, “Equation of State of TiH2 up to 90 GPa: A Synchrotron X-ray Diffraction Study and ab Initio Calculations," J. Appl. Phys. 108, 043511 (2010); https:// doi.org/10.1063/1.3455858.

    Article  ADS  Google Scholar 

  16. Chemist’s Handbook. Basic Properties of Inorganic and Organic Compounds (Khimiya, Moscow, 1971), Vol. 2.

  17. L. M. Lityagina and T. I. Dyuzheva, “Isothermal Compression Study of 3d and 4d Transition Metal Dihydrides II: Compression of ZrH1.99 up to 18 GPa," J. Alloys Compd.179 (1/2), 73–76 (1992); https://doi.org/10.1016/0925-8388(92)90206-O.

    Article  Google Scholar 

  18. M. A. Kuzovnikov and M. Tkacz, “High-Pressure Synthesis of Novel Polyhydrides of Zr and Hf with a Th4H15-Type Structure," J. Phys. Chem. C 123 (50), 30059–30066 (2019); https://doi.org/10.1021/acs.jpcc.9b07918.

    Article  Google Scholar 

  19. K. Weymann and H. Müller, “Deuterides of Nb–Ta, Nb–V and Ta–V Solid Solutions," J. Less Common Met. 119 (1), 127–130 (1986); https://doi.org/10.1016/0022-5088(86)90202-X.

    Article  Google Scholar 

  20. Y. Syono, H. Taguchi, Y. Fukai, T. Atou, K. Kusaba, and K. Fukuoka, “Shock Compression of VH0.50, NbH0.75 and TaH0.50: A Comparative Study," AIP Conf. Proc.309 (1), 861–864 (1994); https:// doi.org/10.1063/1.46235.

  21. H. Taguchi, Y. Fukai, T. Atou, K. Fukuoka, and Y. Syono, “Shock Compression of NbH0.75 and TaH0.5: Universal Compression Behavior of Hydrogen in Metallic Environments," Phys. Rev. B: Condens. Matter. 49 (5), 3025–3029 (1994); DOI: 10.1103/physrevb.49.3025.

    Article  ADS  Google Scholar 

  22. T. Schober, C. Dieker, and R. Feenstra, “Dilute Hydrides, Deuterides and Tritides of V, Nb and Ta: Density Measurements," J. Phys. F: Met. Phys. 18 (6), 1119–1125 (1988).

    Article  ADS  Google Scholar 

  23. H. Meng, “High Pressure X-ray and Raman Studies of the Selected Metal Hydrides," Thesis (Inst. of Phys. Chem. Polish Acad. of Sci., Warsaw, 2019).

  24. B. Stalinski, “X-Ray Analysis and Magnetic Susceptibilities of Tantalum Hydrides," Bull. Acad. Pol. Sci. 2 (5), 245–247 (1954).

    Google Scholar 

  25. A. W. Szafrański, M. Tkacz, S. Majchrzak, and H. Züjchner, “Resistometric Studies of the Ta–H System at High Pressures and Low Temperatures," J. Less Common Met. 101, 523–527 (1984); https:// doi.org/10.1016/0022-5088(84)90127-9.

    Article  Google Scholar 

  26. L. V. Altshuler, R. F. Trunin, K. K. Krupnikov, and N. V. Panov, “Explosive Laboratory Devices for Studying Material Compression in Shock Waves," Usp. Fiz. Nauk 166 (5), 575–581 (1996); DOI: 10.3367/UFNr.0166.199605f.0575.

    Article  Google Scholar 

  27. A. Fukizawa and Y. Fukai, “Effects of High Pressure on the Structure of VH0.5 and NbH0.75," J. Phys. Soc. Jpn. 52, 2102–2107 (1983); https://doi.org/10.1143/JPSJ.52.2102.

    Article  ADS  Google Scholar 

  28. Y. Syono, K. Kusaba, K. Fukuoka, Y. Fukai, and K. Watanabe, “Shock Compression of V2H and V2D to 135 GPa and Anomalous Decompression Behavior," Phys. Rev. B 29(12), 6520–6524 (1984).

    Article  ADS  Google Scholar 

  29. D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudelkin, “Equation of State Model for Metals with Ionization Effectively Taken into Account. Equation of State of Tantalum, Tungsten, Aluminum, and Beryllium," Fiz. Goreniya Vzryva 49 (1), 106–120 (2013) [Combust., Expl., Shock Waves 49 (1), 92–104 (2013); https://doi.org/10.1134/S0010508213010103].

    Article  Google Scholar 

  30. E. I. Zababakhin, Some Issues of Explosion Gas Dynamics (RFNC-VNIITF, Snezhinsk, 1997) [in Russian].

    Google Scholar 

  31. K. K. Krupnikov, A. A. Bakanova, M. I. Brazhnik, and R. F. Trunin, “Investigation of the Shock Compressibility of Titanium, Molybdenum, Tantalum, and Iron," Dokl. Akad. Nauk SSSR 148 (6), 1302–1305 (1963).

    Google Scholar 

  32. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. of California Press, Berkeley, 1980).

  33. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances, Ed. by R. F. Trunin (VNIIEF, Sarov, 2006) [in Russian].

  34. A. C. Mitchell and W. J. Nellis, “Shock Compression of Aluminum, Copper, and Tantalum," J. Appl. Phys. 52 (5), 3363–3374 (1981); https://doi.org/10.1063/1.329160.

    Article  ADS  Google Scholar 

  35. W. J. Nellis, A. C. Mitchell, and D. A. Young, “Equation-of-State Measurements for Aluminum, Copper, and Tantalum in the Pressure Range 80–440 GPa (0.8–4.4 Mbar)," J. Appl. Phys. 93 (1), 304–310 (2003); https://doi.org/10.1063/1.1529071.

    Article  ADS  Google Scholar 

  36. N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, “The Equation of State of Platinum to 660 GPa (6.6 Mbar)," J. Appl. Phys. 66 (7), 2962–2967 (1989); https://doi.org/10.1063/1.344177.

    Article  ADS  Google Scholar 

  37. M. Yokoo, N. Kawai, K. G. Nakamura, and K. Kondo, “Hugoniot Measurement of Gold at High Pressures of up to 580 GPa," Appl. Phys. Lett. 92 (5), 051901(1–3) (2008); https://doi.org/10.1063/1.2840189.

    Article  ADS  Google Scholar 

  38. F. Xi, K. Jin, L. Cai, H. Geng, Y. Tan, and J. Li, “Sound Velocity of Tantalum under Shock Compression in the 18–142 GPa Range," J. Appl. Phys. 117 (18), 185901(1–9) (2015); https://doi.org/10.1063/1.4919845.

    Article  ADS  Google Scholar 

  39. Y. K. Vohra and P. T. Spencer, “Novel\(\gamma\)-Phase of Titanium Metal at Megabar Pressures," Phys. Rev. Lett.86, 3068–3071 (2001); https://doi.org/10.1103/PhysRevLett.86.3068.

    Article  ADS  Google Scholar 

  40. R. F. Trunin, G. V. Simakov, and A. B. Medvedev, “Compression of Titanium in Shock Waves," Teplofiz. Vysok. Temp. 37(6), 881–886 (1999).

    Google Scholar 

  41. V. A. Borisenok, M. V. Zhernokletov, A. E. Kovalev, A. M. Podurets, V. G. Simakov, and M. I. Tkachenko, “Phase Transitions in Shock-Loaded Titanium at Pressures up to 150 GPa," Fiz. Goreniya Vzryva50 (3), 113–121 (2014) [Combust., Expl., Shock Waves50 (3), 346–353 (2014); https://doi.org/10.1134/S0010508214030137].

    Article  Google Scholar 

  42. L. V. Altshuler, A. A. Bakanova, and I. P. Dudoladov, “Influence of the Electronic Structure on the Compressibility of Metals at High Pressures," Zh. Eksp. Teor. Fiz. 53 (12), 1967–1977 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kayakin.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 4, pp. 106-114.https://doi.org/10.15372/FGV20210411.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, A.N., Gudarenko, L.F., Zhernokletov, M.V. et al. Shock Compression of Titanium Hydride and Titanium, Tantalum, and Zirconium Deuterides. Combust Explos Shock Waves 57, 479–486 (2021). https://doi.org/10.1134/S0010508221040110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221040110

Keywords

Navigation