Skip to main content
Log in

Investigation of Acoustic Instability in Solid-Propellant Rocket Motors with the Use of a Pulsed T-Burner

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Provision of stability of the operation process in solid-propellant rocket motors is an integral aspect of motor design and operation. The present paper describes a numerical and experimental method of determining the linear stability of the operation process in a solid rocket motor with an axisymmetric combustor. The method is based on solving a linearized system of equations that describe the dynamics of solid propellant combustion products in the frequency domain. The values of acoustic admittance of the solid-propellant combustion region obtained in a pulse T-burner are used as the boundary conditions. Verification of the method is performed on the basis of numerical and experimental data obtained for six model motors. Results of stability computations for the operation process in a motor with a large aspect ratio operating on a metallized propellant are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. M. W. Beckstead et al., Investigations of Novel Energetic Materials to Stabilize Rocket Motors (California Institute of Technology & Jet Propulsion Center, 2002).

  2. F. E. Culick and P. Kuentzmann, Unsteady Motions in Combustion Chambers for Propulsion Systems (NATO Res. and Technol. Organization Neuilly-Sur-Seine, France, 2006).

  3. F. S. Blomshield and C. Bicker, “Pressure Oscillations in Shuttle Solid Rocket Motors," in 33rd Joint Propul. Conf. and Exhibit. (1997), pp. 1–10; DOI: 10.2514/6.1997-3252.

  4. F. S. Blomshield and H. B. Mathes, “Pressure Oscillations in Post-Challenger Space Shuttle Redesigned Solid Rocket Motors (RSRMs)," in 29th Aerospace Sciences Meeting (1991), pp. 1–9; DOI: 10.2514/6.1991-203.

  5. D. Mason, S. Folkman, and M. Behring, “Thrust Oscillations of the Space Shuttle Solid Rocket Booster Motor during Static Tests," in 15th Joint Propulsion Conference (1979), pp. 1–6; DOI: 10.2514/6.1979-1138.

  6. H. B. Mathes, “Assessment of Chamber Pressure Oscillations in the Shuttle Solid Rocket Booster Motor," in 16th Joint Propul. Conf. (1980), pp. 1–11; DOI: 10.2514/6.1980-1091.

  7. R. S. Brown, R. Dunlap, S. W. Young, and R. C. Waugh, “Vortex Shedding As a Source of Acoustic Energy in Segmented Solid Rockets," J. Spacecraft Rockets 18 (4), 312–319 (1981); DOI: 10.2514/3.57822.

    Article  ADS  Google Scholar 

  8. K. W. Dotson, S. Koshigoe, and K. K. Pace, “Vortex Shedding in a Large Solid Rocket Motor without Inhibitors at the Segment Interfaces," J. Propul. Power 13 (2), 197–206 (1997); DOI: 10.2514/2.5170.

    Article  Google Scholar 

  9. S. Ballereau, F. Godfroy, O. Orlandi, and D. Ballion, “Numerical Simulations and Searching Methods of Thrust Oscillations for Solid Rocket Motors," in 42nd AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit (2006); pp. 1–15; DOI: 10.2514/6.2006-4425.

  10. Y. Fabignon, J. Dupays, G. Avalon, et al., “Instabilities and Pressure Oscillations in Solid Rocket Motors," Aerospace Sci. Technol. 7 (3), 191–200 (2003); DOI: 10.1016/S1270-9638(02)01194-X.

    Article  Google Scholar 

  11. A. Kourta, “Vortex Shedding in Segmented Solid Rocket Motors," J. Propul. Power 12 (2), 371–376 (1996); DOI: 10.2514/3.24038.

    Article  MATH  Google Scholar 

  12. N. Lupoglazoff and F. Vuillot, “Comparison between Firing Tests and Numerical Simulation of Vortex Shedding in a 2-D Test Solid Motor," in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conf. (1993); pp. 1–9; DOI: 10.2514/6.1993-3066.

  13. M. Prevost, F. Vuillot, and J. Traineau, “Vortex Shedding Driven Oscillations in Subscale Motors for the Ariane 5 MPS P230," in 32nd Joint Propul. Conf. and Exhibit (1996), pp. 1–10; DOI: 10.2514/6.1996-3247.

  14. S. Scippa, P. Pascal, and F. Zanier, “Ariane 5-MPS—Chamber Pressure Oscillations Full Scale Firing Results: Analysis and Further Studies," in 30th Joint Propul. Conf. and Exhibit (1994); pp. 1–12; DOI: 10.2514/6.1994-3068.

  15. S. A. Vysotskaya, “Numerical Study of Vortex Structures and Self-Induced Pressure Oscillations in a Solid Propellant Motor with a Submerged Nozzle," Author’s Abstract, Candidate’s Dissertation in Tech. Sci. (Kazan’ Aviats. Inst., Kazan’, 2017).

  16. I. A. Kashina, “Effect of Dissipative Properties of SRM Structural Elements on the Amplitude of Pressure Oscillations in the Combustor with Longitudinal Acoustic Instability," Candidate’s Dissertation in Tech. Sci. (Kazan’ Aviats. Inst., Kazan’, 2017).

  17. E. N. Petrova, “Effect of High-Frequency Oscillations of the Gas in a Solid Propellant Rocket Motor on Longitudinal Acoustic Instability," Candidate’s Dissertation in Tech. Sci. (Perm’ State Tech. Univ., Perm’, 2010).

  18. V. Ferretti, B. Favini, E. Cavallini, et al., “Numerical Simulations of Acoustic Resonance of Solid Rocket Motor," in 46th AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit (2010), pp. 1–18; DOI: 10.2514/6.2010-6996.

  19. A. Genot, S. Gallier, and T. Schuller, “A Numerical Analysis of Aluminum Droplet Combustion Driven Instabilities in Solid Rocket Motors," in 7th European Conf. for Aeronaut. and Space Sci. (2017), pp. 1–14; DOI: 10.13009/EUCASS2017-64.

  20. O. Orlandi, M. Plaud, F. Godfroy, et al., “Aluminium Droplets Combustion and SRM Instabilities," Acta Astronaut. 158, 470–479 (2019); DOI: 10.1016/j.actaastro.2019.03.036.

    Article  ADS  Google Scholar 

  21. M. Barrère and F. A. Williams, “Comparison of Combustion Instabilities Found in Various Types of Combustion Chambers," Symp. (Int.) Combust. 12 (1), 169–181 (1969); DOI: 10.1016/S0082-0784(69)80401-7.

    Article  Google Scholar 

  22. F. E. C. Culick, “Stability of High-Frequency Pressure Oscillations in Rocket Combustion Chambers," AIAA J. 1 (5), 1097–1104 (1963); DOI: 10.2514/3.1730.

    Article  ADS  Google Scholar 

  23. F. E. C. Culick, “Stability of Longitudinal Oscillations with Pressure and Velocity Coupling in a Solid Propellant Rocket," Combust. Sci. Technol. 2 (4), 179–201 (1970); DOI: 10.1080/00102207008952247.

    Article  Google Scholar 

  24. F. E. C. Culick, “Stability of Three-Dimensional Motions in a Combustion Chamber," Combust. Sci. Technol. 10 (3–4), 109–124 (1975); DOI: 10.1080/00102207508946663.

    Article  Google Scholar 

  25. T. M. Rice, “Effect of Unsteady Combustion on the Stability of Rocket Engines," Doct. Dissertation (Univ. of Tennessee, Knoxville, 2011).

  26. S. Fischbach, G. A. Flandro, and J. Majdalani, “Volume-to-Surface Transformations of Rocket Stability Integrals," in 40th AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit (2004), pp. 1–15; DOI: 10.2514/6.2004-4053.

  27. A. A. Kuroedov and D. M. Borisov, “Effect of the Method of Averaging of the Operation Parameters of Energy Facilities on the Value of the Decay Coefficient of Acoustic Oscillations," Tr. Mosk. Aviats. Inst., No. 94, 1–18 (2017).

  28. A. Kierkegaard, “Frequency Domain Linearized Navier–Stokes Equations Methods for Low Mach Number Internal Aeroacoustics," Doct. Dissertation (Roy. Inst. of Technol., Stockholm, 2011).

  29. S. Ducruix, C. Rey, and S. Candel, “A Method for the Transverse Modulation of Reactive Flows with Application to Combustion Instability," Combust. Theory Model. 9 (1), 5–22 (2005); DOI: 10.1080/13647830500051950.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. R. L. Coates, M. D. Horton, and N. W. Ryan, “T-Burner Method of Determining the Acoustic Admittance of Burning Propellants," AIAA J. 2 (6), 1119–1122 (1964); DOI: 10.2514/3.2477.

    Article  ADS  Google Scholar 

  31. V. A. Arkhipov, S. A. Volkov, and L. N. Revyagin, “Experimental Study of the Acoustic Admittance of the Burning Surface of Composite Solid Propellants," Fiz. Goreniya Vzryva 47 (2), 74–80 (2011) [Combust., Expl., Shock Waves 47 (2), 193–199 (2011)].

    Article  Google Scholar 

  32. R. S. Brown, J. E. Erickson, and W. R. Babcock, “Combustion Response Function Measurements by the Rotating Valve Method," AIAA J. 12 (11), 1502–1510 (1974); DOI: 10.2514/3.49536.

    Article  ADS  Google Scholar 

  33. J. D. Baum, B. R. Daniel, and B. T. Zinn, “Determination of Solid Propellant Admittances by the Impedance Tube Method," AIAA J. 19 (2), 214–220 (1981); DOI: 10.2514/3.50942.

    Article  ADS  Google Scholar 

  34. L. D. Strand, K. R. Magiawala, and R. P. McNamara, “Microwave Measurement of the Solid-Propellant Pressure-Coupled Response Function," J. Spacecraft Rockets 17 (6), 483–488 (1980); DOI: 10.2514/3.57768.

    Article  ADS  Google Scholar 

  35. E. H. Cardiff, J. D. Pinkham, and M. Micci, “Magnetic Flowmeter Measurement of Pressure-Coupled Response of a Plateau Solid Propellant," J. Propul. Power 15 (6), 844–848 (1999); DOI: 10.2514/2.5504.

    Article  Google Scholar 

  36. A. A. Kuroedov, D. M. Borisov, and P. A. Semenov, “Determination of Acoustic Admittance of the Combustion Region of Metal-Free and Metallized Energetic Condensed Systems," Tr. Mosk. Aviats. Inst., No. 98, 1–26 (2018).

  37. A. V. Volkov, “Specific Features of Application of the Galerkin Method to Solving Three-Dimensional Navier–Stokes Equations on Unstructured Hexahedral Grids," Uch. Zap. TsAGI 40 (60), 41–59 (2009).

    Google Scholar 

  38. M. L. Krasnov et al., All Higher Mathematics (Editorial URSS, Moscow, 2003), Vol. 6.

    Google Scholar 

  39. S. Fischbach, J. Majdalani, G. Flandro, and J. French, “Verification and Validation of Rocket Stability Integral Transformations," in 41st AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit (2005), pp. 1–15; DOI: 10.2514/6.2005-4001.

  40. W. Eversman, “The Boundary Condition at an Impedance Wall in a Non-Uniform Duct with Potential Mean Flow," J. Sound Vibr. 246 (1), 63–69 (2001); DOI: 10.1006/jsvi.2000.3607.

    Article  ADS  Google Scholar 

  41. L. Crocco, “Verification of Nozzle Admittance Theory by Direct Measurement of the Admittance Parameter," ARS J. 31 (6), 771–775 (1961); DOI: 10.2514/8.5627.

    Article  Google Scholar 

  42. B. A. Janardan, B. R. Daniel, and B. T. Zinn, “Scaling of Rocket Nozzle Admittances," AIAA J. 13 (7), 918–923 (1975); DOI: 10.2514/3.60470.

    Article  ADS  Google Scholar 

  43. A. S. Roshchin, “Modeling of Spatial Flows in Gas Ducts with the Use of Adaptive Grids," Candidate’s Dissertation in Phys. and Math. Sci. (Moscow Aviats. Inst., Moscow, 2014).

  44. P. G. Harris, “Experimental Evaluation of One-Dimensional Design Technology for Linear Combustion Instability," in 30th Joint Propul. Conf. and Exhibit (1994). pp. 1–13; DOI: 10.2514/6.1994-3191.

  45. F. S. Blomshield et al., “Stability Testing of Full-Scale Tactical Motors," J. Propul. Power 13 (3), 349–355 (1997); DOI: 10.2514/2.5191.

    Article  Google Scholar 

  46. P. G. Harris, “Experimental Evaluation of Pulse-Triggered Nonlinear Combustion Instability in Solid Propellant Rocket Motors," Doct. Dissertation (Université Laval, Québec, 2000).

  47. F. S. Blomshield and R. A. Stalnaker, “Pulsed Motor Firings-Pulse Amplitude, Formulation, and Enhanced Instrumentation," in 34th AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit (1998); 1–12; DOI: 10.2514/6.1998-3557.

  48. I. V. Laptev, P. A. Semenov, and S. A. Degtyarev, “Automation of Modeling of Solid Propellant Charge Burnout in the SOLIDWORKS System," Avtomat. Sovr. Tekhnol., No. 3, 14–18 (2016).

  49. B. V. Orlov and G. Yu. Mazing, Thermodynamic and Ballistic Fundamentals of Design of Solid Propellant Rocket Motors (Mashinostroenie, Moscow, 1979) [in Russian].

    Google Scholar 

  50. Gas-Dynamic and Thermophysical Processes in Solid Propellant Rocket Motors, Ed. by A. S. Koroteev (Mashinostroenie, Moscow, 2004) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kuroedov or P. A. Semenov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 4, pp. 57-68.https://doi.org/10.15372/FGV20210406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroedov, A.A., Semenov, P.A. Investigation of Acoustic Instability in Solid-Propellant Rocket Motors with the Use of a Pulsed T-Burner. Combust Explos Shock Waves 57, 433–443 (2021). https://doi.org/10.1134/S0010508221040067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221040067

Keywords

Navigation