Skip to main content
Log in

Synthesis of Ceramic and Composite Materials Using a Combination of Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering (Review)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This review deals with the potential of combining self-propagating high-temperature synthesis (SHS) and spark plasma sintering (SPS) for obtaining single-phase ceramic materials and ceramic and metal matrix composites. The materials discussed in this review contain compounds produced by the SHS process: carbides, borides, and silicides of metals and intermetallics. Factors in the structure formation of materials obtained by sintering of SHS products and the influence of SPS conditions on the characteristics of the materials (relative density and grain size) are analyzed. Advantages of combining the SHS and SPS techniques, including the possibility of additional processing of SHS products (grinding and adding components) to modify the composition and properties of materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. A. S. Rogachev and A. S. Mukas’yan, Combustion for the Synthesis of Materials (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  2. A. G. Merzhanov, “Self-Propagating High-Temperature Synthesis," in Physical chemistry. Contemporary Problems, Ed. by Ya. M. Kolotyrkin (Khimiya, Moscow, 1983), pp. 6–45 [in Russian].

    Google Scholar 

  3. A. S. Rogachev, A. S. Mukas’yan, and A. G. Merzhanov, “Structure Transformation in Gasless Combustion of Titanium–Carbon and Titanium–Boron Systems," Dokl. Akad. Nauk SSSR 297 (6), 1425–1428 (1987).

    Google Scholar 

  4. A. G. Merzhanov, “History and Recent Developments in SHS," Ceram. Int. 21 (5), 371–379 (1995).

    Article  Google Scholar 

  5. P. Mossino, “Some Aspects in Self-Propagating High-Temperature Synthesis," Ceram. Int. 30 (3), 311–332 (2004).

    Article  Google Scholar 

  6. E. Pocheć, S. Jóźwiak, K. Karczewski, and Z. Bojar, “Fe–Al Phase Formation around SHS Reactions under Isothermal Conditions," J. Alloys Compd. 509 (4), 1124–1128 (2011).

    Article  Google Scholar 

  7. V. E. Ovcharenko, O. V. Lapshin, E. N. Boyangin, I. S. Ramazanov, and V. A. Chudinov, “High-Temperature Synthesis of Ni3Al Intermetallic Compound under Pressure," Izv. Vyssh. Uchebn. Zaved. Tsv. Metallurg., No. 4, 63–69 (2007).

    Google Scholar 

  8. G. Tosuna, L. Ozlerb, M. Kayac, and N. Orhand, “A Study on Microstructure and Porosity of NiTi Alloy Implants Produced by SHS," J. Alloys Compd. 487 (1/2), 605–611 (2009).

    Article  Google Scholar 

  9. O. P. Solonenko, V. E. Ovcharenko, V. Yu. Ulianitsky, A. E. Chesnokov, I. S. Batraev, “Effect of the Microstructure of SHS Powders of Titanium Carbide-Nichrome on the Properties of Detonation Coatings," J. Surf. Invest.: X-ray, Synchr. Neutr. Tech. 10 (5), 1040–1047 (2016).

    Article  Google Scholar 

  10. O. K. Lepakova, L. G. Raskolenko, and Y. M. Maksimov, “Self-Propagating High-Temperature Synthesis of Composite Material TiB2–Fe," J. Mater. Sci. 39 (11), 3723–3732 (2004).

    Article  ADS  Google Scholar 

  11. M. S. Song, M. X. Zhang, S. G. Zhang, B. Huang, and J. G. Li, “In situ Fabrication of TiC Particulates Locally Reinforced Aluminum Matrix Composites by Self-Propagating Reaction during Casting," Mater. Sci. Eng. A 473 (1/2), 166–171 (2008).

    Article  Google Scholar 

  12. Y.-S. Kwon, D. V. Dudina, M. A. Korchagin, O. I. Lomovsky, and H.-S. Kim, “Solid State Synthesis of Titanium Diboride in Copper Matrix," J. Metastab. Nanocryst. Mater. 15/16, 253–258 (2003).

    Google Scholar 

  13. E. A. Olevsky and D. V. Dudina, Field-Assisted Sintering: Science and Applications (Springer, Cham, 2018).

  14. R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering," Mater. Sci. Eng. R 63 (4-6), 127–287 (2009).

    Article  Google Scholar 

  15. Z. A. Munir and U. Anselmi-Tamburini, “The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method," J. Mater. Sci. 41 (3), 763–777 (2006).

    Article  ADS  Google Scholar 

  16. E. A. Olevsky, “Impact of Thermal Diffusion on Densification during SPS," J. Am. Ceram. Soc. 92 (S1), S122–S132 (2009).

    Article  Google Scholar 

  17. T. B. Holland, T. B. Tran, D. V. Quach, U. Anselmi-Tamburini, J. R. Groza, and A. K. Mukherjee, “Athermal and Thermal Mechanisms of Sintering at High Heating Rates in the Presence and Absence of an Externally Applied Field," J. Eur. Ceram. Soc. 32 (14), 3675–3683 (2012).

    Article  Google Scholar 

  18. Z.-H. Zhang, Z.-F. Liu, J.-F. Lu, X.-B. Shen, F.-C. Wang, and Y.-D. Wang, “The Sintering Mechanism in Spark Plasma Sintering—Proof of the Occurrence of Spark Discharge," Scripta Mater., No. 81, 56–59 (2014).

    Article  Google Scholar 

  19. D. M. Hulbert, A. Anders, D. V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E. J. Lavernia, and A. K. Mukherjee, “The Absence of Plasma in ‘Spark Plasma Sintering’," J. Appl. Phys. 104 (3), Article number 033305 (2008).

    Article  ADS  Google Scholar 

  20. V. Mamedov, “Spark Plasma Sintering As Advanced PM Sintering Method," Powder Metall. 45 (4), 322–328 (2002).

    Article  Google Scholar 

  21. R. Orrù and G. Cao, “Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials," Materials 6 (5), 1566–1583 (2013).

    Article  ADS  Google Scholar 

  22. C. Musa, R. Orrù, D. Sciti, L. Silvestroni, and G. Cao, “Synthesis, Consolidation and Characterization of Monolithic and SiC Whiskers Reinforced HfB2 Ceramics," J. Eur. Ceram. Soc. 33, (3), 603–614 (2013).

    Article  Google Scholar 

  23. C. Musa., R. Orrù, D. Sciti, and G. Cao, “Spark Plasma Synthesis and Densification of TaB2 by Pulsed Electric Current Sintering," Mater. Lett. 65 (19/20), 3080–3082 (2011).

    Article  Google Scholar 

  24. R. Licheri, R. Orrù, A. M. Locci, and G. Cao, “Efficient Synthesis/Sintering Routes to Obtain Fully Dense ZrB2–SiC Ultra-High-Temperature Ceramics (UHTCs)," Ind. Eng. Chem. Res. 46 (26), 9087–9096 (2007).

    Article  Google Scholar 

  25. R. Licheri, R. Orrù, C. Musa, and G. Cao, “Synthesis, Densification and Characterization of TaB2–SiC Composites," Ceram. Int. 36 (3), 937–941 (2010).

    Article  Google Scholar 

  26. R. Licheri, C. Musa, R. Orrù, G. Cao, D. Sciti, and L. Silvestroni, “Bulk Monolithic Zirconium and Tantalum Diborides by Reactive and Non-Reactive Spark Plasma Sintering," J. Alloys Compd., No. 663, 351–359 (2016).

    Article  Google Scholar 

  27. M. A. Korchagin, T. F. Grigor’iev, B. B. Bokhonov, M. R. Sharafutdinov, A. P. Barinova, and N. Z. Lyakhov, “Solid-State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on Process Parameters and Combustion Product Composition," Fiz. Goreniya Vzryva 39 (1), 51–59 (2003) [Combust., Expl., Shock Waves 39 (1), 43–50 (2003); https://doi.org/10.1023/A:1022145201911].

    Article  Google Scholar 

  28. M. A. Korchagin and D. V. Dudina, “Application of Self-Propagating High-Temperature Synthesis and Mechanical Activation for Obtaining Nanocomposites," Fiz. Goreniya Vzryva 43 (2), 58–71 (2007) [Combust., Expl., Shock Waves 43 (2), 176–187 (2007); https://doi.org/10.1007/s10573-007-0024-3].

    Article  Google Scholar 

  29. M. A. Korchagin, E. G. Avvakumov, G. G. Lepezin, and O. B. Vinokurova, “Thermal Explosion and Self-Propagating High-Temperature Synthesis in Mechanically Activated SiO2–Al Mixtures," Fiz. Goreniya Vzryva 50 (6), 21–27 (2014) [Combust., Expl., Shock Waves 50 (6), 641–646 (2014); https://doi.org/10.1134/S0010508214060033].

    Article  Google Scholar 

  30. M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions," Fiz. Goreniya Vzryva 51 (5), 77–86 (2015) [Combust., Expl., Shock Waves 51 (5), 578–586 (2015); https://doi.org/10.1134/S0010508215050093].

    Article  Google Scholar 

  31. M. A. Korchagin, A. I. Gavrilov, B. B. Bokhonov, N. V. Bulina, and V. E. Zarko, “Synthesis of Aluminum Diboride by Thermal Explosion in Mechanically Activated Mixtures of Initial Reactants," Fiz. Goreniya Vzryva 54 (4), 45–54 (2018) [Combust., Expl., Shock Waves 54 (4), 424–432 (2018); https://doi.org/10.1134/S0010508218040068].

    Article  Google Scholar 

  32. M. A. Korchagin and N. V. Bulina, “Superadiabatic Regime of Thermal Explosion in a Mechanically Activated Mixture of Tungsten with Carbon Black," Fiz. Goreniya Vzryva 52 (2), 112–121 (2016)[Combust., Expl., Shock Waves 52 (2), 225–233 (2016); https://doi.org/10.1134/S0010508216020131].

    Article  Google Scholar 

  33. R. Licheri, C. Musa, R. Orrù, and G. Cao, “Influence of the Heating Rate on the in-situ Synthesis and Consolidation of ZrB2 by Reactive Spark Plasma Sintering," J. Eur. Ceram. Soc. 35 (4), 1129–1137 (2015).

    Article  Google Scholar 

  34. E. Zapata-Solvas, D. D. Jayaseelan, H. T. Lin, P. Brown, and W. E. Lee, “Mechanical Properties of ZrB2- and HfB2-Based Ultra-High Temperature Ceramics Fabricated by Spark Plasma Sintering," J. Eur. Ceram. Soc. 33 (4), 1373–1386 (2013).

    Article  Google Scholar 

  35. E. Sani, M. Meucci, L. Mercatelli, A. Balbo, C. Musa, R. Licheri, R. Orrù, and G. Cao, “Titanium Diboride Ceramics for Solar Thermal Absorbers," Sol. Energy Mater. Sol. Cells 169, 313–319 (2017).

    Article  Google Scholar 

  36. N. S. Karthiselva, B. S. Murty, and S. R. Bakshi, “Low Temperature Synthesis of Dense TiB2 Compacts by Reaction Spark Plasma Sintering," Int. J. Refract. Met. Hard Mater. 48, 201–210 (2015).

    Article  Google Scholar 

  37. Z. H. Zhang, X. B. Shen, F. C. Wang, S. K. Lee, and L. Wang, “Densification Behavior and Mechanical Properties of the Spark Plasma Sintered Monolithic TiB2 Ceramics," Mater. Sci. Eng. A 527 (21/22), 5947–5951 (2010).

    Article  Google Scholar 

  38. A. K. Khanra and M. M. Godkhindi, “Comparative Studies on Sintering Behavior of Self-Propagating High-Temperature Synthesized Ultra-Fine Titanium Diboride Powder," J. Am. Ceram. Soc. 88 (6), 1619–1621 (2005).

    Article  Google Scholar 

  39. S. K. Mishra, S. Das, and L. C. Pathak, “Defect Structures in SHS Produced Zirconium Diboride Powders," Mater. Sci. Eng. A 64 (1/2), 249–255 (2004).

    Article  Google Scholar 

  40. A. V. Ukhina, D. V. Dudina, M. A. Korchagin, Yu. G. Mateishina, N. V. Bulina, A. G. Anisimov, V. I. Mali, and I. S. Batraev, “Synthesis and Compaction of Nickel Boride Ni3B by Spark Plasma Sintering," Khim. Interes. Ustoich. Razv. 24 (2), 203–208 (2016).

    Google Scholar 

  41. D. O. Moskovskikh, Y. Song, S. Rouvimov, A. S. Rogachev, A. S. Mukasyan, “Silicon Carbide Ceramics: Mechanical Activation, Combustion and Spark Plasma Sintering," Ceram. Int. 42 (11), 12686–12693 (2016).

    Article  Google Scholar 

  42. H. Shimizu, M. Yoshinaka, K. Hirota, and O. Yamaguchi, “Fabrication and Mechanical Properties of Monolithic MoSi2 by Spark Plasma Sintering," Mater. Res. Bull. 37 (9), 1557–1563 (2002).

    Article  Google Scholar 

  43. G. Cabouro, S. Chevalier, E. Gaffet, Grin Yu, and F. Bernard, “Reactive Sintering of Molybdenum Disilicide by Spark Plasma Sintering from Mechanically Activated Powder Mixtures: Processing Parameters and Properties," J. Alloys Compd. 465 (1/2), 344–355 (2008).

    Article  Google Scholar 

  44. V. V. Kurbatkina, E. I. Patsera, E. A. Levashova, and A. N. Timofeev, “Self-Propagating High-Temperature Synthesis of Single-Phase Binary Tantalum–Hafnium Carbide (Ta, Hf)C and Its Consolidation by Hot Pressing and Spark Plasma Sintering," Ceram. Int. 44 (4), 4320–4329 (2018).

    Article  Google Scholar 

  45. V. V. Kurbatkina, E. I. Patsera, S. A. Vorotilo, E. A. Levashov, and A. N. Timofeev, “Conditions for Fabricating Single-Phase (Ta, Zr)C Carbide by SHS from Mechanically Activated Reaction Mixtures," Ceram. Int. 42 (15), 16491–16498 (2016).

    Article  Google Scholar 

  46. G. Tallarita, R. Licheri, S. Garroni, R. Orrù, and G. Cao, “Novel Processing Route for the Fabrication of Bulk High-Entropy Metal Diborides," Scripta Mater. 158, 100–104 (2019).

    Article  Google Scholar 

  47. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn, W. M. Mellor, N. Zhou, K. Vecchio, and J. Luo, “High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics," Sci. Rep. 6, Article number 37946 (2016).

  48. M. Castle, T. Csanádi, S. Grasso, J. Dusza, and M. Reece, “Processing and Properties of High-Entropy Ultra-High Temperature Carbides," Sci. Rep. 8, Article number 8609 (2018).

    Article  Google Scholar 

  49. A. V. Shcherbakov, V. A. Shcherbakov, V. Yu. Barinov, S. G. Vadchenko, and A. V. Linde, “Influence of the Mechanical Activation of Reaction Mixture on the Formation of Microstructure of ZrB2–CrB Composites Obtained by Electrothermal Explosions under Pressure," Refract. Ind. Ceram. 60 (2), 61–64 (2019).

    Article  Google Scholar 

  50. A. V. Shcherbakov, V. A. Shcherbakov, and V. Yu. Barinov, “Preparation of the ZrB2–CrB Composites by Pressure-Assisted Electrothermal Explosion," Lett. Mater. 9 (1), 39–44 (2019).

    Article  Google Scholar 

  51. V. T. Telepa, M. I. Alymov, V. A. Shcherbakov, A. V. Shcherbakov, and V. I. Vershinnikov, “Synthesis of the WC–W2C Composite by Electro-Thermal Explosion under Pressure," Lett. Mater. 8 (2), 119–122 (2018).

    Article  Google Scholar 

  52. S. Vorotilo, E. A. Levashov, V. V. Kurbatkina, D. Yu. Kovalev, and N. A. Kochetov, “Self-Propagating High-Temperature Synthesis of Nanocomposite Ceramics TaSi2–SiC with Hierarchical Structure and Superior Properties," J. Eur. Ceram. Soc. 38 (2), 433–443 (2018).

    Article  Google Scholar 

  53. A. Yu. Potanin, S. Vorotilo, Yu. S. Pogozhev, S. I. Rupasov, T. A. Lobova, and E. A. Levashov, “Influence of Mechanical Activation of Reactive Mixtures on the Microstructure and Properties of SHS-Ceramics MoSi2–HfB2–MoB," Ceram. Int. 45 (16), 20354–20361 (2019).

    Article  Google Scholar 

  54. T. Tsuchida and S. Yamamoto, “MA-SHS and SPS of ZrB2–ZrC Composites," Solid State Ionics 172 (1–4), 215–216 (2004).

    Article  Google Scholar 

  55. T. Tsuchida and T. Kakuta, “Fabrication of SPS Compacts from NbC–NbB2 Powder Mixtures Synthesized by the MA-SHS in Air Process," J. Alloys Compd. 415 (1/2), 156–161 (2006).

    Article  Google Scholar 

  56. C. Musa, A. M. Locci, R. Licheri, R. Orrù, G. Cao, D. Vallauri, F. A. Deorsola, E. Tresso, J. Suffner, H. Hahn, P. Klimczyk, and L. Jaworska, “Spark Plasma Sintering of Self-Propagating High-Temperature Synthesized TiC0.7/TiB2 Powders and Detailed Characterization of Dense Product," Ceram. Int. 35 (7), 2587–2599 (2009).

    Article  Google Scholar 

  57. J. Lis, S. Majorowski, V. Hlavacek, and J. A. Puszynski, “Combustion Synthesis and Densification of TiB2–TiC Composite Powders," Int. J. Self-Propag. High-Temp. Synth. 4 (3), 275–285 (1995).

    Google Scholar 

  58. A. M. Locci, R. Orrù, G. Cao, and Z. A. Munir, “Simultaneous Spark Plasma Synthesis and Densification of TiC–TiB2Composites," J. Am. Ceram. Soc. 89 (3), 848–855 (2006).

    Article  Google Scholar 

  59. K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Microstructure and Mechanical Properties of an Ultrafine Grained Ti5Si3–TiC Composite Fabricated by Spark Plasma Sintering," Adv. Powder Technol. 30 (5), 992–998 (2019).

    Article  Google Scholar 

  60. K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Microstructure and Mechanical Properties of Ti5Si3 Fabricated by Spark Plasma Sintering," J. Alloys Compd. 779 (30), 942–949 (2019).

    Article  Google Scholar 

  61. R. Licheri, R. Orrù, C. Musa, A. M. Locci, and G. Cao, “Consolidation via Spark Plasma Sintering of HfB2/SiC and HfB2/HfC/SiC Composite Powders Obtained by Self-Propagating High-Temperature Synthesis," J. Alloys Compd. 478 (1/2), 572–578 (2009).

    Article  Google Scholar 

  62. L. I. Shevtsova, E. A. Lozhkina, V. V. Samoylenko, I. S. Ivanchik, V. I. Mali, and A. G. Anisimov, “Evaluation of Corrosion Resistance of Ni3Al Produced by Spark Plasma Sintering of Mechanically Activated Powder Mixtures," Mater. Today: Proc. 12 (1), 116–119 (2019).

    Google Scholar 

  63. S. Paris, E. Gaffet, F. Bernard, and Z. A. Munir, “Spark Plasma Synthesis from Mechanically Activated Powders: A Versatile Route for Producing Dense Nanostructured Iron Aluminides," Scripta Mater. 50 (5), 691–696 (2004).

    Article  Google Scholar 

  64. T. Grosdidier, G. Ji, E. Bernard, E. Gaffet, Z. A. Munir, and S. Launois, “Synthesis of Bulk FeAl Nanostructured Materials by HVOF Spray Forming and Spark Plasma Sintering," Intermetallics 14 (10/11), 1208–1213 (2006).

    Article  Google Scholar 

  65. S. Paris, C. Pighini, E. Gaffet, Z. A. Munir, and F. Bernard, “Thermal Stability of FeAl Intermetallics Prepared by SHS Sintering," Int. J. Self-Propag. High-Temp. Synth. 17 (3), 183–188 (2008).

    Article  Google Scholar 

  66. G. A. Pribytkov, V. V. Korzhova, A. V. Baranovskii, and M. G. Krinitsyn, “Phase Composition and Structure of SHS Composite Powders of Titanium Carbide with an R6M5 Steel Binder," Izv. Vyssh. Uchebn. Zaved. Poroshk. Metallurg. Funkts. Pokryt. 2, 64–71 (2017).

    Google Scholar 

  67. G. A. Pribytkov, M. G. Krinitsyn, V. V. Korzhova, and A. V. Baranovskii, “Structure and Phase Composition of SHS Products in Powder Mixtures of Titanium, Carbon, and Aluminum," Izv. Vyssh. Uchebn. Zaved. Poroshk. Metallurg. Funkts. Pokryt 3, 26–35 (2019).

    Google Scholar 

  68. A. G. Knyazeva, E. N. Korosteleva, M. G. Krinitsyn, et al., Metal–Matrix Composites with a Refractory Dispersed Phase: Synthesis, Structure, and Application (Ivan Fedorov, Tomsk, 2019) [in Russian].

    Google Scholar 

  69. M. A. Lagos, I. Agote, G. Atxaga, O. Adarraga, and L. Pambaguian, “Fabrication and Characterization of Titanium Matrix Composites Obtained Using a Combination of Self Propagating High Temperature Synthesis and Spark Plasma Sintering," Mater. Sci. Eng. A 655, 44–49 (2016).

    Article  Google Scholar 

  70. J. S. Kim et al., “Properties of Cu-Based Nanocomposites Produced by Mechanically-Activated Self-Propagating High-Temperature Synthesis and Spark-Plasma Sintering," J. Nanosci. Nanotechnol. 10, 252–257 (2010).

    Article  Google Scholar 

  71. D. V. Dudina, T. M. Vidyuk, M. A. Korchagin, A. I. Gavrilov, N. V. Bulina, M. A. Esikov, M. Datekyu, and H. Kato, “Interaction of a Ti–Cu Alloy with Carbon: Synthesis of Composites and Model Experiments," Materials 12 (9), Article number 1482 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Vidyuk.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 4, pp. 3-17.https://doi.org/10.15372/FGV20210401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidyuk, T.M., Korchagin, M.A., Dudina, D.V. et al. Synthesis of Ceramic and Composite Materials Using a Combination of Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering (Review). Combust Explos Shock Waves 57, 385–397 (2021). https://doi.org/10.1134/S0010508221040018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221040018

Keywords

Navigation