Skip to main content
Log in

Viral Vectors in Gene Replacement Therapy

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2024

This article has been updated

Abstract

Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels. Hematological, ophthalmological, neurodegenerative, and metabolic therapeutic areas have witnessed successful treatment of hemophilia and muscular dystrophy, restoration of immune system in children with immunodeficiencies, and restoration of vision. This review focuses on three leading vector platforms of the past two decades: adeno-associated viruses (AAVs), adenoviruses (AdVs), and lentiviruses (LVs). Special attention is given to successful preclinical and clinical studies that have led to the approval of gene therapies: six AAV-based (Glybera® for lipoprotein lipase deficiency, Luxturna® for retinal dystrophy, Zolgensma® for spinal muscular atrophy, Upstaza® for AADC, Roctavian® for hemophilia A, and Hemgenix® for hemophilia B) and three LV-based (Libmeldy® for infantile metachromatic leukodystrophy, Zynteglo® for β-thalassemia, and Skysona® for ALD). The review also discusses the problems that arise in the development of gene therapy treatments, which, nevertheless, do not overshadow the successes of already developed gene therapies and the hope these treatments give to long-suffering patients and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

References

  1. Mahoney, A. L. G., Nassif, N. T., O’Brien, B. A., and Simpson, A. M. (2022) Viral Vectors in Gene Therapy and Clinical Applications in Molecular Cloning, IntechOpen.

  2. Flotte, T., Carter, B., Conrad, C., Guggino, W., Reynolds, T., Rosenstein, B., Taylor, G., Walden, S., and Wetzel, R. (1996) A phase I study of an adeno-associated Virus-CFTR gene vector in adult CF patients with mild lung disease, Hum. Gene Ther., 7, 1145-1159, https://doi.org/10.1089/hum.1996.7.9-1145.

    Article  CAS  PubMed  Google Scholar 

  3. Manno, C. S., Arruda, V. R., Pierce, G. F., Glader, B., Ragni, M., Rasko, J., Ozelo, M. C., Hoots, K., Blatt, P., Konkle, B., et al. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response, Nat. Med., 12, 342-347, https://doi.org/10.1038/nm1358.

    Article  CAS  PubMed  Google Scholar 

  4. Mease, P. J., Hobbs, K., Chalmers, A., El-Gabalawy, H., Bookman, A., Keystone, E., Furst, D. E., Anklesaria, P., and Heald, A. E. (2009) Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor α antagonist gene in inflammatory arthritis: A phase 1 dose-escalation safety and tolerability study, Ann. Rheum. Dis., 68, 1247-1254, https://doi.org/10.1136/ard.2008.089375.

    Article  CAS  PubMed  Google Scholar 

  5. Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z. F., Tillman, A., Wittes, J., Pappas, J., Elci, O., McCague, S., et al. (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial, Lancet, 390, 849-860, https://doi.org/10.1016/S0140-6736(17)31868-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trapani, I. (2019) Adeno-associated viral vectors as a tool for large gene delivery to the retina, Genes (Basel), 10, 287, https://doi.org/10.3390/genes10040287.

    Article  CAS  PubMed  Google Scholar 

  7. Chang, Y. X., Zhao, Y., Pan, S., Qi, Z. P., Kong, W. J., Pan, Y. R., Li, H. R., and Yang, X. Y. (2019) Intramuscular injection of adenoassociated virus encoding human neurotrophic factor 3 and exercise intervention contribute to reduce spasms after spinal cord injury, Neural Plast., 2019, 3017678, https://doi.org/10.1155/2019/3017678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giannakopoulos, A., Quiviger, M., Stavrou, E., Verras, M., Marie, C., Scherman, D., and Athanassiadou, A. (2019) Efficient episomal gene transfer to human hepatic cells using the pFAR4-S/MAR vector, Mol. Biol. Rep., 46, 3203-3211, https://doi.org/10.1007/s11033-019-04777-9.

    Article  CAS  PubMed  Google Scholar 

  9. Gaspar, H. B., Cooray, S., Gilmour, K. C., Parsley, K. L., Zhang, F., Adams, S., Bjorkegren, E., Bayford, J., Brown, L., Davies, E. G., et al. (2011) Immunodeficiency: Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction, Sci. Transl. Med., 3, 97ra80, https://doi.org/10.1126/scitranslmed.3002716.

    Article  CAS  PubMed  Google Scholar 

  10. Kotin, R. M. (2011) Large-scale recombinant adeno-associated virus production, Hum. Mol. Genet., 20, R2-R6, https://doi.org/10.1093/hmg/ddr141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, Z., Asokan, A., and Samulski, R. J. (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy, Mol. Ther., 14, 316-327, https://doi.org/10.1016/j.ymthe.2006.05.009.

    Article  CAS  PubMed  Google Scholar 

  12. Schaffer, D. V., Koerber, J. T., and Lim, K.-Il (2008) Molecular engineering of viral gene delivery vehicles, Annu. Rev. Biomed. Eng., 10, 169-194, https://doi.org/10.1146/annurev.bioeng.10.061807.160514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colella, P., Ronzitti, G., and Mingozzi, F. (2018) Emerging issues in AAV-mediated in vivo gene therapy, Mol. Ther. Methods Clin. Dev., 8, 87-104, https://doi.org/10.1016/j.omtm.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  14. Mingozzi, F., Meulenberg, J. J., Hui, D. J., Basner-Tschakarjan, E., Hasbrouck, N. C., Edmonson, S. A., Hutnick, N. A., Betts, M. R., Kastelein, J. J., Stroes, E. S., et al. (2009) AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells, Blood, 114, 2077-2086, https://doi.org/10.1182/blood-2008-07-167510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lebherz, C., Maguire, A., Tang, W., Bennett, J., and Wilson, J. M. (2008) Novel AAV serotypes for improved ocular gene transfer, J. Gene Med., 10, 375-382, https://doi.org/10.1002/jgm.1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ojala, D. S., Amara, D. P., and Schaffer, D. V. (2015) Adeno-associated virus vectors and neurological gene therapy, Neuroscientist, 21, 84-98, https://doi.org/10.1177/1073858414521870.

    Article  CAS  PubMed  Google Scholar 

  17. Sen, D., Balakrishnan, B., Gabriel, N., Agrawal, P., Roshini, V., Samuel, R., Srivastava, A., and Jayandharan, G. R. (2013) Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy, Sci. Rep., 6, 1832, https://doi.org/10.1038/srep01832.

    Article  CAS  PubMed Central  Google Scholar 

  18. Kattenhorn, L. M., Tipper, C. H., Stoica, L., Geraghty, D. S., Wright, T. L., Clark, K. R., and Wadsworth, S. C. (2016) Adeno-associated virus gene therapy for liver disease, Hum. Gene Ther., 27, 947-961, https://doi.org/10.1089/hum.2016.160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McCarty, D. M. (2008) Self-complementary AAV vectors; advances and applications, Mol. Ther., 16, 1648-1656, https://doi.org/10.1038/mt.2008.171.

    Article  CAS  PubMed  Google Scholar 

  20. Nathwani, A. C., Gray, J. T., Ng, C. Y. C., Zhou, J., Spence, Y., Waddington, S. N., Tuddenham, E. G. D., Kemball-Cook, G., McIntosh, J., Boon-Spijker, M., et al. (2006) Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver, Blood, 107, 2653-2661, https://doi.org/10.1182/blood-2005-10-4035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nathwani, A. C., Tuddenham, E. G. D., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D. C., Chowdary, P., Riddell, A., Pie, A. J., Harrington, C., et al. (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B, N. Engl. J. Med., 365, 2357-2365, https://doi.org/10.1056/nejmoa1108046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mendell, J. R., Al-Zaidy, S., Shell, R., Arnold, W. D., Rodino-Klapac, L. R., Prior, T. W., Lowes, L., Alfano, L., Berry, K., Church, K., et al. (2017) Single-dose gene-replacement therapy for spinal muscular atrophy, N. Engl. J. Med., 377, 1713-1722, https://doi.org/10.1056/nejmoa1706198.

    Article  CAS  PubMed  Google Scholar 

  23. Calcedo, R., Morizono, H., Wang, L., McCarter, R., He, J., Jones, D., Batshaw, M. L., and Wilson, J. M. (2011) Adeno-associated virus antibody profiles in newborns, children, and adolescents, Clin. Vaccine Immunol., 18, 1586-1588, https://doi.org/10.1128/CVI.05107-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erles, K., Sebökovà, P., and Schlehofer, J. R. (1999) Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV), J. Med. Virol., 59, 406-411, https://doi.org/10.1002/(sici)1096-9071(199911)59:3<406::aid-jmv22>3.0.co;2-n.

    Article  CAS  PubMed  Google Scholar 

  25. Li, C., Narkbunnam, N., Samulski, R. J., Asokan, A., Hu, G., Jacobson, L. J., Manco-Johnson, M. L., Monahan, P. E., Riske, B., Kilcoyne, R., et al. (2012) Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia, Gene Ther., 19, 288-294, https://doi.org/10.1038/gt.2011.90.

    Article  CAS  PubMed  Google Scholar 

  26. Wright, J. F. (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies, Gene Ther. 2008 1511, 15, 840-848, https://doi.org/10.1038/gt.2008.65.

    Article  CAS  Google Scholar 

  27. Grieger, J. C., and Samulski, R. J. (2012) Adeno-Associated virus Vectorology, Manufacturing, and Clinical Applications, in Methods in Enzymology, Academic Press, https://doi.org/10.1016/B978-0-12-386509-0.00012-0.

  28. Schultz, B. R., and Chamberlain, J. S. (2008) Recombinant adeno-associated virus transduction and integration, Mol. Ther., 16, 1189-1199, https://doi.org/10.1038/mt.2008.103.

    Article  CAS  PubMed  Google Scholar 

  29. Valdmanis, P. N., Lisowski, L., and Kay, M. A. (2012) RAAV-Mediated tumorigenesis: still unresolved after an AAV assault, Mol. Ther., 20, 2014-2017, https://doi.org/10.1038/mt.2012.220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El Andari, J., and Grimm, D. (2021) Production, processing, and characterization of synthetic AAV gene therapy vectors, Biotechnol. J., 16, 2000025, https://doi.org/10.1002/biot.202000025.

    Article  CAS  Google Scholar 

  31. Bertin, B., Veron, P., Leborgne, C., Deschamps, J. Y., Moullec, S., Fromes, Y., Collaud, F., Boutin, S., Latournerie, V., van Wittenberghe, L., et al. (2020) Capsid-specific removal of circulating antibodies to adeno-associated virus vectors, Sci. Rep., 10, 864, https://doi.org/10.1038/s41598-020-57893-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leborgne, C., Barbon, E., Alexander, J. M., Hanby, H., Delignat, S., Cohen, D. M., Collaud, F., Muraleetharan, S., Lupo, D., Silverberg, J., et al. (2020) IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies, Nat. Med., 26, 1096-1101, https://doi.org/10.1038/s41591-020-0911-7.

    Article  CAS  PubMed  Google Scholar 

  33. Elmore, Z. C., Oh, D. K., Simon, K. E., Fanous, M. M., and Asokan, A. (2020) Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme, JCI Insight, 5, e139881, https://doi.org/10.1172/jci.insight.139881.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ghosh, A., Yue, Y., Lai, Y., and Duan, D. (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner, Mol. Ther., 16, 124-130, https://doi.org/10.1038/sj.mt.6300322.

    Article  CAS  PubMed  Google Scholar 

  35. Lai, Y., Yue, Y., Liu, M., Ghosh, A., Engelhardt, J. F., Chamberlain, J. S., and Duan, D. (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors, Nat. Biotechnol., 23, 1435-1439, https://doi.org/10.1038/nbt1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chew, W. L., Tabebordbar, M., Cheng, J. K. W., Mali, P., Wu, E. Y., Ng, A. H. M., Zhu, K., Wagers, A. J., and Church, G. M. (2016) A multifunctional AAV-CRISPR-Cas9 and its host response, Nat. Methods, 13, 868-874, https://doi.org/10.1038/nmeth.3993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, J., Sun, W., Wang, B., Xiao, X., and Liu, X. Q. (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy, Hum. Gene Ther., 19, 958-964, https://doi.org/10.1089/hum.2008.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stroes, E. S., Nierman, M. C., Meulenberg, J. J., Franssen, R., Twisk, J., Henny, C. P., Maas, M. M., Zwinderman, A. H., Ross, C., Aronica, E., et al. (2008) Intramuscular administration of AAV1-lipoprotein lipaseS447X lowers triglycerides in lipoprotein lipase-deficient patients, Arterioscler. Thromb. Vasc. Biol., 28, 2303-2304, https://doi.org/10.1161/ATVBAHA.108.175620.

    Article  CAS  PubMed  Google Scholar 

  39. Gaudet, D., de Wal, J., Tremblay, K., Déry, S., van Deventer, S., Freidig, A., Brisson, D., and Méthot, J. (2010) Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency, Atheroscler. Suppl., 11, 55-60, https://doi.org/10.1016/j.atherosclerosissup.2010.03.004.

    Article  CAS  PubMed  Google Scholar 

  40. Carpentier, A. C., Frisch, F., Labbe, S. M., Gagnon, R., De Wal, J., Greentree, S., Petry, H., Twisk, J., Brisson, D., and Gaudet, D. (2012) Effect of alipogene tiparvovec (aav1-lpls447x) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients, J. Clin. Endocrinol. Metab., 97, 1635-1644, https://doi.org/10.1210/jc.2011-3002.

    Article  CAS  PubMed  Google Scholar 

  41. Bennett, J., Ashtari, M., Wellman, J., Marshall, K. A., Cyckowski, L. L., Chung, D. C., McCague, S., Pierce, E. A., Chen, Y., Bennicelli, J. L., et al. (2012) Gene therapy: AAV2 gene therapy readministration in three adults with congenital blindness, Sci. Transl. Med., 4, 120ra15, https://doi.org/10.1126/scitranslmed.3002865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bainbridge, J. W. B., Smith, A. J., Barker, S. S., Robbie, S., Henderson, R., Balaggan, K., Viswanathan, A., Holder, G. E., Stockman, A., Tyler, N., et al. (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis, N. Engl. J. Med., 358, 2231-2239, https://doi.org/10.1056/NEJMOA0802268.

    Article  CAS  PubMed  Google Scholar 

  43. Cideciyan, A. V., Hauswirth, W. W., Aleman, T. S., Kaushal, S., Schwartz, S. B., Boye, S. L., Windsor, E. A. M., Conlon, T. J., Sumaroka, A., Pang, J. J., et al. (2009) Human RPE65 gene therapy for leber congenital amaurosis: persistence of early visual improvements and safety at 1 year, Hum. Gene Ther., 20, 999-1004, https://doi.org/10.1089/hum.2009.086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maguire, A. M., Simonelli, F., Pierce, E. A., Pugh, E. N., Mingozzi, F., Bennicelli, J., Banfi, S., Marshall, K. A., Testa, F., Surace, E. M., et al. (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis, N. Engl. J. Med., 358, 2240-2248, https://doi.org/10.1056/nejmoa0802315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cideciyan, A. V., Aleman, T. S., Boye, S. L., Schwartz, S. B., Kaushal, S., Roman, A. J., Pang, J. J., Sumaroka, A., Windsor, E. A. M., Wilson, J. M., et al. (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics, Proc. Natl. Acad. Sci. USA, 105, 15112-15117, https://doi.org/10.1073/pnas.0807027105.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hauswirth, W. W., Aleman, T. S., Kaushal, S., Cideciyan, A. V., Schwartz, S. B., Wang, L., Conlon, T. J., Boye, S. L., Flotte, T. R., Byrne, B. J., et al. (2008) Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial, Hum Gene Ther., 19, 979-990, https://doi.org/10.1089/HUM.2008.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jacobson, S. G., Cideciyan, A. V., Ratnakaram, R., Heon, E., Schwartz, S. B., Roman, A. J., Peden, M. C., Aleman, T. S., Boye, S. L., Sumaroka, A., et al. (2012) Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years, Arch. Ophthalmol., 130, 9-24, https://doi.org/10.1001/archophthalmol.2011.298.

    Article  CAS  PubMed  Google Scholar 

  48. Simonelli, F., Maguire, A. M., Testa, F., Pierce, E. A., Mingozzi, F., Bennicelli, J. L., Rossi, S., Marshall, K., Banfi, S., Surace, E. M., et al. (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration, Mol. Ther., 18, 643-650, https://doi.org/10.1038/mt.2009.277.

    Article  CAS  PubMed  Google Scholar 

  49. Testa, F., Maguire, A. M., Rossi, S., Pierce, E. A., Melillo, P., Marshall, K., Banfi, S., Surace, E. M., Sun, J., Acerra, C., et al. (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with leber congenital amaurosis type 2, Ophthalmology, 120, 1283-1291, https://doi.org/10.1016/j.ophtha.2012.11.048.

    Article  PubMed  Google Scholar 

  50. Maguire, A. M., High, K. A., Auricchio, A., Wright, J. F., Pierce, E. A., Testa, F., Mingozzi, F., Bennicelli, J. L., Ying, G. shuang, Rossi, S., et al. (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial, Lancet, 374, 1597-1605, https://doi.org/10.1016/S0140-6736(09)61836-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boye, S. E., Boye, S. L., Lewin, A. S., and Hauswirth, W. W. (2013) A comprehensive review of retinal gene therapy, Mol. Ther., 21, 509-519, https://doi.org/10.1038/mt.2012.280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. MacLaren, R. E., Groppe, M., Barnard, A. R., Cottriall, C. L., Tolmachova, T., Seymour, L., Reed Clark, K., During, M. J., Cremers, F. P. M., Black, G. C. M., et al. (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial, Lancet, 383, 1129-1137, https://doi.org/10.1016/S0140-6736(13)62117-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kiss, S., Osborne, A., Hoang, C., and Turpcu, A. (2020) ADVM-022 intravitreal gene therapy for neovascular AMD – results from the phase 1 OPTIC Study, Mol. Ther., 28, 220-221.

    Google Scholar 

  54. Harper, S. Q., Hauser, M. A., DelloRusso, C., Duan, D., Crawford, R. W., Phelps, S. F., Harper, H. A., Robinson, A. S., Engelhardt, J. F., Brooks, S. V., et al. (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy, Nat. Med., 8, 253-261, https://doi.org/10.1038/nm0302-253.

    Article  CAS  PubMed  Google Scholar 

  55. Salva, M. Z., Himeda, C. L., Tai, P. W. L., Nishiuchi, E., Gregorevic, P., Allen, J. M., Finn, E. E., Nguyen, Q. G., Blankinship, M. J., Meuse, L., et al. (2007) Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle, Mol. Ther., 15, 320-329, https://doi.org/10.1038/sj.mt.6300027.

    Article  CAS  PubMed  Google Scholar 

  56. BRIEF-Solid Biosciences Announces Clinical Hold On SGT-001 Phase I/Ii Clinical Trial | Reuters. URL: https://www.reuters.com/article/brief-solid-biosciences-announces-clinic/brief-solid-biosciences-announces-clinical-hold-on-sgt-001-phase-i-ii-clinical-trial-idINASC09SB8/.

  57. Kay, M. A., Manno, C. S., Ragni, M. V., Larson, P. J., Couto, L. B., McClelland, A., Glader, B., Chew, A. J., Tai, S. J., Herzog, R. W., et al. (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector, Nat. Genet., 24, 257-261, https://doi.org/10.1038/73464.

    Article  CAS  PubMed  Google Scholar 

  58. Manno, C. S., Chew, A. J., Hutchison, S., Larson, P. J., Herzog, R. W., Arruda, V. R., Tai, S. J., Ragni, M. V., Thompson, A., Ozelo, M., et al. (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B, Blood, 101, 2963-2972, https://doi.org/10.1182/blood-2002-10-3296.

    Article  CAS  PubMed  Google Scholar 

  59. Mingozzi, F., Maus, M. V., Hui, D. J., Sabatino, D. E., Murphy, S. L., Rasko, J. E. J., Ragni, M. V., Manno, C. S., Sommer, J., Jiang, H., et al. (2007) CD18+ T-cell responses to adeno-associated virus capsid in humans, Nat. Med., 13, 419-422, https://doi.org/10.1038/nm1549.

    Article  CAS  PubMed  Google Scholar 

  60. Nathwani, A. C., Gray, J. T., McIntosh, J., Ng, C. Y. C., Zhou, J., Spence, Y., Cochrane, M., Gray, E., Tuddenham, E. G. D., and Davidoff, A. M. (2007) Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates, Blood, 109, 1414-1421, https://doi.org/10.1182/blood-2006-03-010181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meng, Y., Sun, D., Qin, Y., Dong, X., Luo, G., and Liu, Y. (2021) Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system, Mol. Ther. Methods Clin. Dev., 21, 28-41, https://doi.org/10.1016/j.omtm.2021.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boutin, S., Monteilhet, V., Veron, P., Leborgne, C., Benveniste, O., Montus, M. F., and Masurier, C. (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors, Hum. Gene Ther., 21, 704-712, https://doi.org/10.1089/hum.2009.182.

    Article  CAS  PubMed  Google Scholar 

  63. Kruzik, A., Fetahagic, D., Hartlieb, B., Dorn, S., Koppensteiner, H., Horling, F. M., Scheiflinger, F., Reipert, B. M., and de la Rosa, M. (2019) Prevalence of anti-adeno-associated virus immune responses in international cohorts of healthy donors, Mol. Ther. Methods Clin. Dev., 14, 126-133, https://doi.org/10.1016/j.omtm.2019.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang, H., Couto, L. B., Patarroyo-White, S., Liu, T., Nagy, D., Vargas, J. A., Zhou, S., Scallan, C. D., Sommer, J., Vijay, S., et al. (2006) Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy, Blood, 108, 3321-3328, https://doi.org/10.1182/blood-2006-04-017913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Monahan, P., Walsh, C. E., Konkle, B. A., Powell, J. S., Josephson, N. C., et al. (2015) Update on a phase 1/2 open-label trial of BAX335, an adeno-associated virus 8 (AAV8) vector-based gene therapy program for hemophilia B, J. Thromb. Haemost., 13, 87, https://doi.org/10.1111/jth.12993.

    Article  Google Scholar 

  66. Herzog, R. W. (2015) hemophilia gene therapy: caught between a cure and an immune response, Mol. Ther., 23, 1411-1412, https://doi.org/10.1038/mt.2015.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozelo, M. C., Mahlangu, J., Pasi, K. J., Giermasz, A., Leavitt, A. D., Laffan, M., Symington, E., Quon, D. V., Wang, J.-D., Peerlinck, K., et al. (2022) Valoctocogene roxaparvovec gene therapy for hemophilia A, N. Engl. J. Med., 386, 1013-1025, https://doi.org/10.1056/NEJMOA2113708.

    Article  CAS  PubMed  Google Scholar 

  68. Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B., Yaroshinsky, A., Zsebo, K. M., Dittrich, H., and Hajjar, R. J. (2011) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): A phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure, Circulation, 124, 304-313, https://doi.org/10.1161/CIRCULATIONAHA.111.022889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., Borow, K., Dittrich, H., Zsebo, K. M., and Hajjar, R. J. (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial, J. Card. Fail., 15, 171-181, https://doi.org/10.1016/j.cardfail.2009.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaplitt, M. G., Feigin, A., Tang, C., Fitzsimons, H. L., Mattis, P., Lawlor, P. A., Bland, R. J., Young, D., Strybing, K., Eidelberg, D., et al. (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial, Lancet, 369, 2097-2105, https://doi.org/10.1016/S0140-6736(07)60982-9.

    Article  CAS  PubMed  Google Scholar 

  71. LeWitt, P. A., Rezai, A. R., Leehey, M. A., Ojemann, S. G., Flaherty, A. W., Eskandar, E. N., Kostyk, S. K., Thomas, K., Sarkar, A., Siddiqui, M. S., et al. (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial, Lancet Neurol., 10, 309-319, https://doi.org/10.1016/S1474-4422(11)70039-4.

    Article  CAS  PubMed  Google Scholar 

  72. Hwu, W. L., Muramatsu, S. I., Tseng, S. H., Tzen, K. Y., Lee, N. C., Chien, Y. H., Snyder, R. O., Byrne, B. J., Tai, C. H., and Wu, R. M. (2012) Gene therapy for aromatic L-amino acid decarboxylase deficiency, Sci. Transl. Med., 4, 134ra61, https://doi.org/10.1126/scitranslmed.3003640.

    Article  CAS  PubMed  Google Scholar 

  73. Lee, N. C., Muramatsu, S. I., Chien, Y. H., Liu, W. S., Wang, W. H., Cheng, C. H., Hu, M. K., Chen, P. W., Tzen, K. Y., Byrne, B. J., et al. (2015) Benefits of neuronal preferential systemic gene therapy for neurotransmitter deficiency, Mol. Ther., 23, 1572-1581, https://doi.org/10.1038/mt.2015.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tai, C. H., Lee, N. C., Chien, Y. H., Byrne, B. J., Muramatsu, S. I., Tseng, S. H., and Hwu, W. L. (2022) Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency, Mol. Ther., 30, 509-518, https://doi.org/10.1016/J.YMTHE.2021.11.005.

    Article  CAS  PubMed  Google Scholar 

  75. Alexander, I. E., Cunningham, S. C., Logan, G. J., and Christodoulou, J. (2008) Potential of AAV vectors in the treatment of metabolic disease, Gene Ther., 15, 831-839, https://doi.org/10.1038/gt.2008.64.

    Article  CAS  PubMed  Google Scholar 

  76. Blankinship, M. J., Gregorevic, P., and Chamberlain, J. S. (2006) Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors, Mol. Ther., 13, 241-249, https://doi.org/10.1016/j.ymthe.2005.11.001.

    Article  CAS  PubMed  Google Scholar 

  77. Duan, D. (2016) Systemic delivery of adeno-associated viral vectors, Curr. Opin. Virol., 21, 16-25, https://doi.org/10.1016/j.coviro.2016.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Clément, N., and Grieger, J. C. (2016) Manufacturing of recombinant adeno-associated viral vectors for clinical trials, Mol. Ther. Methods Clin. Dev., 3, 16002, https://doi.org/10.1038/mtm.2016.2.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhu, J., Huang, X., and Yang, Y. (2009) The TLR9-MyD88 pathway is critical for adaptive immune responses to adenoassociated virus gene therapy vectors in mice, J. Clin. Invest., 119, 2388-2398, https://doi.org/10.1172/JCI37607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sands, M. S. (2011) AAV-mediated liver-directed gene therapy, Methods Mol. Biol., 807, 141-157, https://doi.org/10.1007/978-1-61779-370-7_6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saraiva, J., Nobre, R. J., and Pereira de Almeida, L. (2016) Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9, J. Control. Release, 241, 94-109, https://doi.org/10.1016/j.jconrel.2016.09.011.

    Article  CAS  PubMed  Google Scholar 

  82. Mendell, J. R., Sahenk, Z., Lehman, K., Nease, C., Lowes, L. P., Miller, N. F., Iammarino, M. A., Alfano, L. N., Nicholl, A., Al-Zaidy, S., et al. (2020) Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in Children with Duchenne muscular dystrophy: a nonrandomized controlled trial, JAMA Neurol., 77, 1122-1131, https://doi.org/10.1001/jamaneurol.2020.1484.

    Article  PubMed  Google Scholar 

  83. Stein, S., Ott, M. G., Schultze-Strasser, S., Jauch, A., Burwinkel, B., Kinner, A., Schmidt, M., Krämer, A., Schwäble, J., Glimm, H., et al. (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease, Nat. Med., 16, 198-204, https://doi.org/10.1038/nm.2088.

    Article  CAS  PubMed  Google Scholar 

  84. Prösen, S., Stein, J., Staak, K., Liebenthal, C., Volk, H. D., and Krüger, D. H. (1996) Inactivation of the very strong HCMV immediate early promoter by DMA CpG methylation in vitro, Biol. Chem. Hoppe. Seyler., 377, 195-201, https://doi.org/10.1515/bchm3.1996.377.3.195.

    Article  Google Scholar 

  85. Brooks, A. R., Harkins, R. N., Wang, P., Qian, H. S., Liu, P., and Rubanyi, G. M. (2004) Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle, J. Gene Med., 6, 395-404, https://doi.org/10.1002/jgm.516.

    Article  CAS  PubMed  Google Scholar 

  86. Chandler, R. J., La Fave, M. C., Varshney, G. K., Trivedi, N. S., Carrillo-Carrasco, N., Senac, J. S., Wu, W., Hoffmann, V., Elkahloun, A. G., Burgess, S. M., et al. (2015) Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy, J. Clin. Invest., 125, 870-880, https://doi.org/10.1172/JCI79213.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kornegay, J. N., Li, J., Bogan, J. R., Bogan, D. J., Chen, C., Zheng, H., Wang, B., Qiao, C., Howard, J. F., and Xiao, X. (2010) Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs, Mol. Ther., 18, 1501-1508, https://doi.org/10.1038/mt.2010.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lange, A. M., Altynova, E. S., Nguyen, G. N., and Sabatino, D. E. (2016) Overexpression of factor VIII after AAV delivery is transiently associated with cellular stress in hemophilia A mice, Mol. Ther. Methods Clin. Dev., 3, 16064, https://doi.org/10.1038/mtm.2016.64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Watakabe, A., Ohtsuka, M., Kinoshita, M., Takaji, M., Isa, K., Mizukami, H., Ozawa, K., Isa, T., and Yamamori, T. (2015) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex, Neurosci. Res., 93, 144-157, https://doi.org/10.1016/j.neures.2014.09.002.

    Article  PubMed  Google Scholar 

  90. Klein, R. L., Dayton, R. D., Leidenheimer, N. J., Jansen, K., Golde, T. E., and Zweig, R. M. (2006) Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins, Mol. Ther., 13, 517-527, https://doi.org/10.1016/j.ymthe.2005.10.008.

    Article  CAS  PubMed  Google Scholar 

  91. Follenzi, A., Battaglia, M., Lombardo, A., Annoni, A., Roncarolo, M. G., and Naldini, L. (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice, Blood, 103, 3700-3709, https://doi.org/10.1182/blood-2003-09-3217.

    Article  CAS  PubMed  Google Scholar 

  92. Gernoux, G., Guilbaud, M., Dubreil, L., Larcher, T., Babarit, C., Ledevin, M., Jaulin, N., Planel, P., Moullier, P., and Adjali, O. (2015) Early interaction of adeno-associated virus serotype 8 vector with the host immune system following intramuscular delivery results in weak but detectable lymphocyte and dendritic cell transduction, Hum. Gene Ther., 26, 1-13, https://doi.org/10.1089/hum.2014.070.

    Article  CAS  PubMed  Google Scholar 

  93. Xiong, W., Wu, D. M., Xue, Y., Wang, S. K., Chung, M. J., Ji, X., Rana, P., Zhao, S. R., Mai, S., and Cepko, C. L. (2019) AAV cis-regulatory sequences are correlated with ocular toxicity, Proc. Natl. Acad. Sci. USA, 116, 5785-5794, https://doi.org/10.1073/pnas.1821000116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Burdett, T., and Nuseibeh, S. (2022) Changing trends in the development of AAV-based gene therapies: a meta-analysis of past and present therapies, Gene Ther., 30, 323-335, https://doi.org/10.1038/s41434-022-00363-0.

    Article  CAS  PubMed  Google Scholar 

  95. Georgiadis, A., Duran, Y., Ribeiro, J., Abelleira-Hervas, L., Robbie, S. J., Sünkel-Laing, B., Fourali, S., Gonzalez-Cordero, A., Cristante, E., Michaelides, M., et al. (2016) Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65, Gene Ther., 23, 857-862, https://doi.org/10.1038/gt.2016.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beltran, W. A., Cideciyan, A. V., Boye, S. E., Ye, G. J., Iwabe, S., Dufour, V. L., Marinho, L. F., Swider, M., Kosyk, M. S., Sha, J., et al. (2017) Optimization of retinal gene therapy for X-linked retinitis pigmentosa due to RPGR mutations, Mol. Ther., 25, 1866-1880, https://doi.org/10.1016/j.ymthe.2017.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Crystal, R. G. (2014) Adenovirus: the first effective in vivo gene delivery vector, Hum. Gene Ther., 25, 3-11, https://doi.org/10.1089/hum.2013.2527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Benihoud, K., Yeh, P., and Perricaudet, M. (1999) Adenovirus vectors for gene delivery, Curr. Opin. Biotechnol., 10, 440-447, https://doi.org/10.1016/S0958-1669(99)00007-5.

    Article  CAS  PubMed  Google Scholar 

  99. Liu, Q., and Muruve, D. A. (2003) Molecular basis of the inflammatory response to adenovirus vectors, Gene Ther., 10, 935-940, https://doi.org/10.1038/sj.gt.3302036.

    Article  CAS  PubMed  Google Scholar 

  100. Amalfitano, A., Hauser, M. A., Hu, H., Serra, D., Begy, C. R., and Chamberlain, J. S. (1998) Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted, J. Virol., 72, 926-933, https://doi.org/10.1128/jvi.72.2.926-933.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wen, S., Schneider, D. B., Driscoll, R. M., Vassalli, G., Sassani, A. B., and Dichek, D. A. (2000) Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall, Arterioscler. Thromb. Vasc. Biol., 20, 1452-1458, https://doi.org/10.1161/01.ATV.20.6.1452.

    Article  CAS  PubMed  Google Scholar 

  102. Sakhuja, K., Connelly, S., Reddy, P. S., Ganesh, S., Cantaniag, F., Pattison, S., Limbach, P., Kayda, D. B., Kadan, M. J., and Kaleko, M. (2003) Optimization of the generation and propagation of gutless adenoviral vectors, Hum. Gene Ther., 14, 243-254, https://doi.org/10.1089/10430340360535797.

    Article  CAS  PubMed  Google Scholar 

  103. Lee, C. S., Bishop, E. S., Zhang, R., Yu, X., Farina, E. M., Yan, S., Zhao, C., Zeng, Z., Shu, Y., Wu, X., et al. (2017) Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine, Genes Dis., 4, 43-63, https://doi.org/10.1016/j.gendis.2017.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rosenfeld, M. A., Siegfried, W., Yoshimura, K., Yoneyama, K., Fukayama, M., Stier, L. E., Pääkkö, P. K., Gilardi, P., Stratford-Perricaudet, L. D., Perricaudet, M., et al. (1991) Adenovirus-mediated transfer of a recombinant α1-antitrypsin gene to the lung epithelium in vivo, Science, 252, 431-434, https://doi.org/10.1126/science.2017680.

    Article  CAS  PubMed  Google Scholar 

  105. Jaffe, H. A., Danel, C., Longenecker, G., Metzger, M., Setoguchi, Y., Rosenfeld, M. A., Gant, T. W., Thorgeirsson, S. S., Stratford-Perricaudet, L. D., Perricaudet, M., et al. (1992) Adenovirus-mediated in vivo gene transfer and expression in normal rat liver, Nat. Genet., 1, 372-378, https://doi.org/10.1038/ng0892-372.

    Article  CAS  PubMed  Google Scholar 

  106. Zabner, J., Couture, L. A., Gregory, R. J., Graham, S. M., Smith, A. E., and Welsh, M. J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis, Cell, 75, 207-216, https://doi.org/10.1016/0092-8674(93)80063-K.

    Article  CAS  PubMed  Google Scholar 

  107. Rosengart, T. K., Lee, L. Y., Patel, S. R., Sanborn, T. A., Parikh, M., Bergman, G. W., Hachamovitch, R., Szulc, M., Kligfield, P. D., Okin, P. M., et al. (1999) Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease, Circulation, 100, 468-474, https://doi.org/10.1161/01.CIR.100.5.468.

    Article  CAS  PubMed  Google Scholar 

  108. Wilson, J. M. (2018) Lessons Learned from the Gene Therapy Trial for Ornithine Transcarbamylase Deficiency, in Getting to Good: Research Integrity in the Biomedical Sciences, Academic Press.

  109. Wohlfart, C. (1988) Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms, J. Virol., 62, 2321-2328, https://doi.org/10.1128/jvi.62.7.2321-2328.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hong, S. S., Habib, N. A., Franqueville, L., Jensen, S., and Boulanger, P. A. (2003) Identification of adenovirus (Ad) penton base neutralizing epitopes by use of sera from patients who had received conditionally replicative Ad (Addl1520) for treatment of liver tumors, J. Virol., 77, 10366-10375, https://doi.org/10.1128/jvi.77.19.10366-10375.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Muruve, D. A. (2004) The innate immune response to adenovirus vectors, Hum. Gene Ther., 15, 1157-1166, https://doi.org/10.1089/hum.2004.15.1157.

    Article  CAS  PubMed  Google Scholar 

  112. Doi, K., and Takeuchi, Y. (2015) Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials [in Japanese], Uirusu, 65, 27-36, https://doi.org/10.2222/jsv.65.27.

    Article  CAS  PubMed  Google Scholar 

  113. Ghosh, S., Brown, A. M., Jenkins, C., and Campbell, K. (2020) Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges, Appl. Biosaf., 25, 7-18, https://doi.org/10.1177/1535676019899502.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kohn, D. B., and Candotti, F. (2009) Gene therapy fulfilling its promise, N. Engl. J. Med., 360, 518-521, https://doi.org/10.1056/nejme0809614.

    Article  CAS  PubMed  Google Scholar 

  115. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E., et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1, Science, 302, 415-419, https://doi.org/10.1126/science.1088547.

    Article  CAS  PubMed  Google Scholar 

  116. Uren, A. G., Kool, J., Berns, A., and Van Lohuizen, M. (2005) Retroviral insertional mutagenesis: past, present and future, Oncogene, 24, 7656-7672, https://doi.org/10.1038/sj.onc.1209043.

    Article  CAS  PubMed  Google Scholar 

  117. Griffith, L. M., Cowan, M. J., Notarangelo, L. D., Kohn, D. B., Puck, J. M., Pai, S. Y., Ballard, B., Bauer, S. C., Bleesing, J. J. H., Boyle, M., et al. (2014) Primary Immune Deficiency Treatment Consortium (PIDTC) report, J. Allergy Clin. Immunol., 133, 335-347, https://doi.org/10.1016/j.jaci.2013.07.052.

    Article  PubMed  Google Scholar 

  118. Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., et al. (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia, Nature, 467, 318-322, https://doi.org/10.1038/nature09328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aiuti, A., Biasco, L., Scaramuzza, S., Ferrua, F., Cicalese, M. P., Baricordi, C., Dionisio, F., Calabria, A., Giannelli, S., Castiello, M. C., et al. (2013) Lentiviral hematopoietic stem cell gene therapy in patients with wiskott-aldrich syndrome, Science, 341, https://doi.org/10.1126/science.1233151.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Smart, B. A. (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency, Pediatrics, 124, 447-458, https://doi.org/10.1542/peds.2009-1870AAAA.

    Article  Google Scholar 

  121. Aiuti, A., Slavin, S., Aker, M., Ficara, F., Deola, S., Mortellaro, A., Morecki, S., Andolfi, G., Tabucchi, A., Carlucci, F., et al. (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning, Science, 296, 2410-2413, https://doi.org/10.1126/science.1070104.

    Article  CAS  PubMed  Google Scholar 

  122. Biffi, A., Montini, E., Lorioli, L., Cesani, M., Fumagalli, F., Plati, T., Baldoli, C., Martino, S., Calabria, A., Canale, S., et al. (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy, Science, 341, https://doi.org/10.1126/science.1233158.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., et al. (1995) T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years, Science, 270, 475-480, https://doi.org/10.1126/science.270.5235.475.

    Article  CAS  PubMed  Google Scholar 

  124. Bordignon, C., Notarangelo, L. D., Nobili, N., Ferrari, G., Casorati, G., Panina, P., Mazzolari, E., Maggioni, D., Rossi, C., Servida, P., et al. (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients, Science, 270, 470-475, https://doi.org/10.1126/science.270.5235.470.

    Article  CAS  PubMed  Google Scholar 

  125. Kohn, D. B., Weinberg, K. I., Nolta, J. A., Heiss, L. N., Lenarsky, C., Crooks, G. M., Hanley, M. E., Annett, G., Brooks, J. S., El-Khoureiy, A., et al. (1995) Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency, Nat. Med., 1, 1017-1023, https://doi.org/10.1038/nm1095-1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cavazzana-Calvo, M., Hacein-Bey, S., De Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., Selz, F., Hue, C., Certain, S., Casanova, J. L., et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease, Science, 288, 669-672, https://doi.org/10.1126/science.288.5466.669.

    Article  CAS  PubMed  Google Scholar 

  127. Candotti, F., Shaw, K. L., Muul, L., Carbonaro, D., Sokolic, R., Choi, C., Schurman, S. H., Garabedian, E., Kesserwan, C., Jagadeesh, G. J., et al. (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: Clinical comparison of retroviral vectors and treatment plans, Blood, 120, 3635-3646, https://doi.org/10.1182/blood-2012-02-400937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Aiuti, A., Cassani, B., Andolfi, G., Mirolo, M., Biasco, L., Recchia, A., Urbinati, F., Valacca, C., Scaramuzza, S., Aker, M., et al. (2007) Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy, J. Clin. Invest., 117, 2233-2240, https://doi.org/10.1172/JCI31666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gaspar, H. B. (2012) Gene therapy for ADA-SCID: Defining the factors for successful outcome, Blood, 120, 3628-3629, https://doi.org/10.1182/blood-2012-08-446559.

    Article  CAS  PubMed  Google Scholar 

  130. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J.-L., Fraser, C. C., Cavazzana-Calvo, M., et al. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency, N. Engl. J. Med., 348, 255-256, https://doi.org/10.1056/nejm200301163480314.

    Article  PubMed  Google Scholar 

  131. Hacein-Bey-Abina, S., Garrigue, A., Wang, G. P., Soulier, J., Lim, A., Morillon, E., Clappier, E., Caccavelli, L., Delabesse, E., Beldjord, K., et al. (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1, J. Clin. Invest., 118, 3132-3142, https://doi.org/10.1172/JCI35700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Howe, S. J., Mansour, M. R., Schwarzwaelder, K., Bartholomae, C., Hubank, M., Kempski, H., Brugman, M. H., Pike-Overzet, K., Chatters, S. J., De Ridder, D., et al. (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients, J. Clin. Invest., 118, 3143-3150, https://doi.org/10.1172/JCI35798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rohdewohld, H., Weiher, H., Reik, W., Jaenisch, R., and Breindl, M. (1987) Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites, J. Virol., 61, 336-343, https://doi.org/10.1128/jvi.61.2.336-343.1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vijaya, S., Steffen, D. L., and Robinson, H. L. (1986) Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin, J. Virol., 60, 683-692, https://doi.org/10.1128/jvi.60.2.683-692.1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cattoglio, C., Facchini, G., Sartori, D., Antonelli, A., Miccio, A., Cassani, B., Schmidt, M., Von Kalle, C., Howe, S., Thrasher, A. J., et al. (2007) Hot spots of retroviral integration in human CD34+ hematopoietic cells, Blood, 110, 1770-1778, https://doi.org/10.1182/blood-2007-01-068759.

    Article  CAS  PubMed  Google Scholar 

  136. Cattoglio, C., Pellin, D., Rizzi, E., Maruggi, G., Corti, G., Miselli, F., Sartori, D., Guffanti, A., Di Serio, C., Ambrosi, A., et al. (2010) High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors, Blood, 116, 5507-5517, https://doi.org/10.1182/blood-2010-05-283523.

    Article  CAS  PubMed  Google Scholar 

  137. Modlich, U., Navarro, S., Zychlinski, D., Maetzig, T., Knoess, S., Brugman, M. H., Schambach, A., Charrier, S., Galy, A., Thrasher, A. J., et al. (2009) Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors, Mol. Ther., 17, 1919-1928, https://doi.org/10.1038/mt.2009.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu, W., Russ, J. L., and Eiden, M. V. (2012) Evaluation of residual promoter activity in γ-retroviral self-inactivating (SIN) vectors, Mol. Ther., 20, 84-90, https://doi.org/10.1038/mt.2011.204.

    Article  CAS  PubMed  Google Scholar 

  139. Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Ponzoni, M., Bartholomae, C., Sergi, L. S., Benedicenti, F., Ambrosi, A., Di Serio, C., et al. (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration, Nat. Biotechnol., 24, 687-696, https://doi.org/10.1038/nbt1216.

    Article  CAS  PubMed  Google Scholar 

  140. Hacein-Bey-Abina, S., Pai, S.-Y., Gaspar, H. B., Armant, M., Berry, C. C., Blanche, S., Bleesing, J., Blondeau, J., de Boer, H., Buckland, K. F., et al. (2014) A modified γ-retrovirus vector for X-linked severe combined immunodeficiency, N. Engl. J. Med., 371, 1407-1417, https://doi.org/10.1056/nejmoa1404588.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Touzot, F., Moshous, D., Creidy, R., Neven, B., Frange, P., Cros, G., Caccavelli, L., Blondeau, J., Magnani, A., Luby, J. M., et al. (2015) Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1, Blood, 125, 3563-3569, https://doi.org/10.1182/blood-2014-12-616003.

    Article  CAS  PubMed  Google Scholar 

  142. Modlich, U., Bohne, J., Schmidt, M., Von Kalle, C., Knöss, S., Schambach, A., and Baum, C. (2006) Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity, Blood, 108, 2545-2553, https://doi.org/10.1182/blood-2005-08-024976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cavazza, A., Cocchiarella, F., Bartholomae, C., Schmidt, M., Pincelli, C., Larcher, F., and Mavilio, F. (2013) Self-inactivating MLV vectors have a reduced genotoxic profile in human epidermal keratinocytes, Gene Ther., 20, 949-957, https://doi.org/10.1038/gt.2013.18.

    Article  CAS  PubMed  Google Scholar 

  144. Boztug, K., Schmidt, M., Schwarzer, A., Banerjee, P. P., Díez, I. A., Dewey, R. A., Böhm, M., Nowrouzi, A., Ball, C. R., Glimm, H., et al. (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome, N. Engl. J. Med., 363, 1918-1927, https://doi.org/10.1056/NEJMOA1003548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Braun, C. J., Boztug, K., Paruzynski, A., Witzel, M., Schwarzer, A., Rothe, M., Modlich, U., Beier, R., Göhring, G., Steinemann, D., et al. (2014) Gene therapy for Wiskott-Aldrich syndrome-long-term efficacy and genotoxicity, Sci. Transl. Med., 6, https://doi.org/10.1126/scitranslmed.3007280.

    Article  PubMed  Google Scholar 

  146. Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., and Trono, D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science, 272, 263-267, https://doi.org/10.1126/science.272.5259.263.

    Article  CAS  PubMed  Google Scholar 

  147. Zhu, Y., Feuer, G., Day, S. L., Wrzesinski, S., and Planelles, V. (2001) Multigene lentiviral vectors based on differential splicing and translational control, Mol. Ther., 4, 375-382, https://doi.org/10.1006/mthe.2001.0469.

    Article  CAS  PubMed  Google Scholar 

  148. Yu, X., Zhan, X., D’Costa, J., Tanavde, V. M., Ye, Z., Peng, T., Malehorn, M. T., Yang, X., Civin, C. I., and Cheng, L. (2003) Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells, Mol. Ther., 7, 827-838, https://doi.org/10.1016/S1525-0016(03)00104-7.

    Article  CAS  PubMed  Google Scholar 

  149. Tian, J., and Andreadis, S. T. (2009) Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector, Gene Ther., 16, 874-884, https://doi.org/10.1038/gt.2009.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abordo-Adesida, E., Follenzi, A., Barcia, C., Sciascia, S., Castro, M. G., Naldini, L., and Lowenstein, P. R. (2005) Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses, Hum. Gene Ther., 16, 741-751, https://doi.org/10.1089/hum.2005.16.741.

    Article  CAS  PubMed  Google Scholar 

  151. Baekelandt, V., Eggermont, K., Michiels, M., Nuttin, B., and Debyser, Z. (2003) Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain, Gene Ther., 10, 1933-1940, https://doi.org/10.1038/sj.gt.3302094.

    Article  CAS  PubMed  Google Scholar 

  152. Vigna, E., Cavalieri, S., Ailles, L., Geuna, M., Loew, R., Bujard, H., and Naldini, L. (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors, Mol. Ther., 5, 252-261, https://doi.org/10.1006/mthe.2002.0542.

    Article  CAS  PubMed  Google Scholar 

  153. Brown, B. D., Venneri, M. A., Zingale, A., Sergi, L. S., and Naldini, L. (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer, Nat. Med., 12, 585-591, https://doi.org/10.1038/nm1398.

    Article  CAS  PubMed  Google Scholar 

  154. Duisit, G., Conrath, H., Saleun, S., Folliot, S., Provost, N., Cosset, F. L., Sandrin, V., Moullier, P., and Rolling, F. (2002) Five recombinant Simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat, Mol. Ther., 6, 446-454, https://doi.org/10.1006/mthe.2002.0690.

    Article  CAS  PubMed  Google Scholar 

  155. Beard, B. C., Dickerson, D., Beebe, K., Gooch, C., Fletcher, J., Okbinoglu, T., Miller, D. G., Jacobs, M. A., Kaul, R., Kiem, H. P., et al. (2007) Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells, Mol. Ther., 15, 1356-1365, https://doi.org/10.1038/sj.mt.6300159.

    Article  CAS  PubMed  Google Scholar 

  156. Walters, M. C., Rasko, J., Hongeng, S., Kwiatkowski, J., Schiller, G. J., Kletzel, M., Ho, P. J., Vichinsky, E., von Kalle, C., Cavazzana, M., et al. (2015) Update of results from the Northstar Study (HGB-204): a phase 1/2 study of gene therapy for beta-Thalassemia major via transplantation of autologous hematopoietic stem cells transduced ex-vivo with a lentiviral beta AT87Q-globin vector (LentiGlobin BB305), Blood, 126, 201-201, https://doi.org/10.1182/blood.v126.23.201.201.

    Article  Google Scholar 

  157. Cavazzana, M., Ribeil, J.-A., Payen, E., Suarez, F., Beuzard, Y., Touzot, F., Cavallesco, R., Lefrere, F., Chretien, S., Bourget, P., et al. (2015) Outcomes of gene therapy for severe sickle disease and beta-thalassemia major via transplantation of autologous hematopoietic stem cells transduced ex vivo with a lentiviral beta AT87Q-globin vector, Blood, 126, 202-202, https://doi.org/10.1182/blood.v126.23.202.202.

    Article  Google Scholar 

  158. Malik, P. (2016) Gene therapy for hemoglobinopathies: tremendous successes and remaining caveats, Mol. Ther., 24, 668-670, https://doi.org/10.1038/mt.2016.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cartier, N., and Aubourg, P. (2010) Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X-linked Adrenoleukodystrophy, Brain Pathol., 20, 857-862, https://doi.org/10.1111/j.1750-3639.2010.00394.x.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kohn, D. B., Shaw, K. L., Garabedian, E., Carbonaro-Sarracino, D. A., Moore, T. B., De Oliveira, S. N., Crooks, G. M., Tse, J., Shupien, S., Terrazas, D., et al. (2019) Lentiviral gene therapy with autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of severe combined immune deficiency due to adenosine deaminase deficiency (ADA-SCID): results in an expanded cohort, Blood, 134, 3345-3345, https://doi.org/10.1182/blood-2019-123432.

    Article  Google Scholar 

  161. Gaspar, H. B., Buckland, K. F., Rivat, C., Himoudi, N., Gilmour, K. C., and et al (2014) Immunological and metabolic correction after lentiviral vector mediated haematopoietic stem cell gene therapy for ADA deficiency, Hum. Gene Ther., Conference: Annual Conference of the British-Society-for-Gene-and-Cell-Therapy, Vol. 25.

  162. Cicalese, M. P., and Aiuti, A. (2015) Clinical applications of gene therapy for primary immunodeficiencies, Hum. Gene Ther., 26, 210-219, https://doi.org/10.1089/hum.2015.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Qasim, W., and Gennery, A. R. (2014) Gene therapy for primary immunodeficiencies: Current status and future prospects, Drugs, 74, 963-969, https://doi.org/10.1007/s40265-014-0223-7.

    Article  CAS  PubMed  Google Scholar 

  164. Ferrua, F., Cicalese, M. P., Galimberti, S., Scaramuzza, S., Giannelli, S., Pajno, R., Dionisio, F., Biasco, L., Castiello, M. C., Casiraghi, M., et al. (2015) Safety and clinical benefit of lentiviral hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome, Blood, 126, 259-259, https://doi.org/10.1182/blood.v126.23.259.259.

    Article  Google Scholar 

  165. Chu, J. I., Henderson, L. A., Armant, M., Male, F., Dansereau, C. H., MacKinnon, B., Burke, C. J., Cavanaugh, M. E., London, W. B., Barlan, I. B., et al. (2015) Gene therapy using a self-inactivating lentiviral vector improves clinical and laboratory manifestations of Wiskott-Aldrich syndrome, Blood, 126, 260-260, https://doi.org/10.1182/blood.v126.23.260.260.

    Article  Google Scholar 

  166. Zhao, Z., Anselmo, A. C., and Mitragotri, S. (2022) Viral vector-based gene therapies in the clinic, Bioeng. Transl. Med., 7, e10258, https://doi.org/10.1002/btm2.10258.

    Article  PubMed  Google Scholar 

  167. Raman, S. S., Hecht, J. R., and Chan, E. (2019) Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety, Immunotherapy, 11, 705-723, https://doi.org/10.2217/imt-2019-0033.

    Article  CAS  PubMed  Google Scholar 

  168. Pearson, S., Jia, H., and Kandachi, K. (2004) China approves first gene therapy., Nat. Biotechnol., 22, 3-4, https://doi.org/10.1038/nbt0104-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xia, Y., Li, X., and Sun, W. (2020) Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China, Curr. Gene Ther., 20, 127-141, https://doi.org/10.2174/1566523220999200731003206.

    Article  CAS  PubMed  Google Scholar 

  170. Liang, M. (2018) Oncorine, the world first oncolytic virus medicine and its update in China, Curr. Cancer Drug Targets, 18, 171-176, https://doi.org/10.2174/1568009618666171129221503.

    Article  CAS  PubMed  Google Scholar 

  171. Gordon, E. M., and Hall, F. L. (2010) Rexin-G, a targeted genetic medicine for cancer, Expert Opin. Biol. Ther., 10, 819-832, https://doi.org/10.1517/14712598.2010.481666.

    Article  CAS  PubMed  Google Scholar 

  172. Chawla, S. P., Bruckner, H., Morse, M. A., Assudani, N., Hall, F. L., and Gordon, E. M. (2019) A phase I-II study using rexin-G tumor-targeted retrovector encoding a dominant-negative cyclin G1 inhibitor for advanced pancreatic cancer, Mol. Ther. Oncolytics, 12, 56-67, https://doi.org/10.1016/j.omto.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  173. Chawla, S. P., Chua, V. S., Fernandez, L., Quon, D., Saralou, A., Blackwelder, W. C., Hall, F. L., and Gordon, E. M. (2009) Phase I/II and phase II studies of targeted gene delivery in vivo: intravenous rexin-g for chemotherapy-resistant sarcoma and osteosarcoma, Mol. Ther., 17, 1651-1657, https://doi.org/10.1038/mt.2009.126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mueller, C., Gernoux, G., Gruntman, A. M., Borel, F., Reeves, E. P., Calcedo, R., Rouhani, F. N., Yachnis, A., Humphries, M., Campbell-Thompson, M., et al. (2017) 5 Year expression and neutrophil defect repair after gene therapy in alpha-1 antitrypsin deficiency, Mol. Ther., 25, 1387-1394, https://doi.org/10.1016/j.ymthe.2017.03.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bennett, J., Wellman, J., Marshall, K. A., McCague, S., Ashtari, M., DiStefano-Pappas, J., Elci, O. U., Chung, D. C., Sun, J., Wright, J. F., et al. (2016) Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial, Lancet, 388, 661-672, https://doi.org/10.1016/S0140-6736(16)30371-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. George, L. A., Sullivan, S. K., Giermasz, A., Rasko, J. E. J., Samelson-Jones, B. J., Ducore, J., Cuker, A., Sullivan, L. M., Majumdar, S., Teitel, J., et al. (2017) Hemophilia B gene therapy with a high-specific-activity factor IX variant, N. Engl. J. Med., 377, 2215-2227, https://doi.org/10.1056/nejmoa1708538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dicks, M. D. J., Spencer, A. J., Edwards, N. J., Wadell, G., Bojang, K., Gilbert, S. C., Hill, A. V. S., and Cottingham, M. G. (2012) A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity, PLoS One, 7, e40385, https://doi.org/10.1371/journal.pone.0040385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Guo, J., Mondal, M., and Zhou, D. (2018) Development of novel vaccine vectors: chimpanzee adenoviral vectors, Hum. Vaccines Immunother., 14, 1679-1685, https://doi.org/10.1080/21645515.2017.1419108.

    Article  Google Scholar 

  179. Tatsis, N., and Ertl, H. C. J. (2004) Adenoviruses as vaccine vectors, Mol. Ther., 10, 616-629, https://doi.org/10.1016/j.ymthe.2004.07.013.

    Article  CAS  PubMed  Google Scholar 

  180. Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M., and Abedi, M. R. (2018) Gene therapy clinical trials worldwide to 2017: an update, J. Gene Med., 20, e3015, https://doi.org/10.1002/jgm.3015.

    Article  PubMed  Google Scholar 

  181. Stirnadel-Farrant, H., Kudari, M., Garman, N., Imrie, J., Chopra, B., Giannelli, S., Gabaldo, M., Corti, A., Zancan, S., Aiuti, A., et al. (2018) Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID, Orphanet J. Rare Dis., 13, 49, https://doi.org/10.1186/s13023-018-0791-9.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Milone, M. C., and O’Doherty, U. (2018) Clinical use of lentiviral vectors, Leukemia, 32, 1529-1541, https://doi.org/10.1038/S41375-018-0106-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L., and Trono, D. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery, J. Virol., 72, 9873-9880, https://doi.org/10.1128/jvi.72.12.9873-9880.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. McGarrity, G. J., Hoyah, G., Winemiller, A., Andre, K., Stein, D., Blick, G., Greenberg, R. N., Kinder, C., Zolopa, A., Binder-Scholl, G., et al. (2013) Patient monitoring and follow-up in lentiviral clinical trials, J. Gene Med., 15, 78-82, https://doi.org/10.1002/jgm.2691.

    Article  CAS  PubMed  Google Scholar 

  185. Baldo, A., den Akker, E., Bergmans, H., Lim, F., and Pauwels, K. (2014) General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination, Curr. Gene Ther., 13, 385-394, https://doi.org/10.2174/15665232113136660005.

    Article  Google Scholar 

  186. Cesana, D., Sgualdino, J., Rudilosso, L., Merella, S., Naldini, L., and Montini, E. (2012) Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations, J. Clin. Invest., 122, 1667-1676, https://doi.org/10.1172/JCI62189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Touw, I. P., and Erkeland, S. J. (2007) Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia, Mol. Ther., 15, 13-19, https://doi.org/10.1038/sj.mt.6300040.

    Article  CAS  PubMed  Google Scholar 

  188. Suerth, J. D., Labenski, V., and Schambach, A. (2014) Alpharetroviral vectors: from a cancer-causing agent to a useful tool for human gene therapy, Viruses, 6, 4811-4838, https://doi.org/10.3390/v6124811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Moiani, A., Paleari, Y., Sartori, D., Mezzadra, R., Miccio, A., Cattoglio, C., Cocchiarella, F., Lidonnici, M. R., Ferrari, G., and Mavilio, F. (2012) Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts, J. Clin. Invest., 122, 1653-1666, https://doi.org/10.1172/JCI61852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Emery, D. W. (2011) The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors, Hum. Gene Ther., 22, 761-774, https://doi.org/10.1089/hum.2010.233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. David, R. M., and Doherty, A. T. (2017) Viral vectors: the road to reducing genotoxicity, Toxicol. Sci., 155, 315-325, https://doi.org/10.1093/toxsci/kfw220.

    Article  CAS  PubMed  Google Scholar 

  192. Huang, X., and Yang, Y. (2009) Innate immune recognition of viruses and viral vectors, Hum. Gene Ther., 20, 293-301, https://doi.org/10.1089/hum.2008.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J., and Wilson, J. M. (2009) Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses, J. Infect. Dis., 199, 381-390, https://doi.org/10.1086/595830.

    Article  PubMed  Google Scholar 

  194. Bubela, T., Boch, R., and Viswanathan, S. (2019) Recommendations for regulating the environmental risk of shedding for gene therapy and oncolytic viruses in Canada, Front. Med., 6, 58, https://doi.org/10.3389/fmed.2019.00058.

    Article  Google Scholar 

  195. Schenk-Braat, E. A. M., van Mierlo, M. K. B., Wagemaker, G., Bangma, C. H., and Kaptein, L. C. M. (2007) An Inventory of Shedding Data from Clinical Gene Therapy Trials, J. Gene Med., 9, 910-921, https://doi.org/10.1002/jgm.1096.

    Article  PubMed  Google Scholar 

  196. Blind, J. E., McLeod, E. N., and Campbell, K. J. (2019) Viral-mediated gene therapy and genetically modified therapeutics: A primer on biosafety handling for the health-system pharmacist, Am. J. Heal. Pharm., 76, 795-802, https://doi.org/10.1093/ajhp/zxz056.

    Article  Google Scholar 

  197. The Lancet Diabets & Endocrinology (2019) Spotlight on rare diseases, Lancet Diabetes Endocrinol., 7, 75, https://doi.org/10.1016/S2213-8587(19)30006-3.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 22-14-20046). A.D.E. was supported by the Russian Science Foundation (project no. 22-14-20046). E.M., A.G., A.K., and R.A.I. were supported by the internal projects GTH-RND-2011 and GTH-RND-2112.

Author information

Authors and Affiliations

Authors

Contributions

E.M. manuscript concept, writing and editing, preparation of figures; A.G. clinical data analysis and preparation of figures; A.E. manuscript writing, R.I. manuscript editing, A.K. manuscript concept and editing.

Corresponding author

Correspondence to Ekaterina Minskaia.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minskaia, E., Galieva, A., Egorov, A.D. et al. Viral Vectors in Gene Replacement Therapy. Biochemistry Moscow 88, 2157–2178 (2023). https://doi.org/10.1134/S0006297923120179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120179

Keywords

Navigation