Skip to main content
Log in

Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms?

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly – within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body’s cellular reserve – progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

MSCs:

mesenchymal stem/stromal cells

Rb:

retinoblastoma protein

ROS:

reactive oxygen species

RPM:

Random Positioning Machine

SMG:

simulated microgravity

References

  1. Demontis, G. C., Germani, M. M., Caiani, E. G., Barravecchia, I., Passino, C., and Angeloni, D. (2017) Human pathophysiological adaptations to the space environment, Front. Physiol., 8, 547, https://doi.org/10.3389/fphys.2017.00547.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tran, K. N., and Choi, J. I. (2022) Mimic microgravity effect on muscle transcriptome under ionizing radiation, Life Sci. Space Res., 32, 96-104, https://doi.org/10.1016/j.lssr.2021.12.002.

    Article  Google Scholar 

  3. Patel, S. (2020) The effects of microgravity and space radiation on cardiovascular health: from low-Earth orbit and beyond, Int. J. Cardiol. Heart Vasc., 30, 100595, https://doi.org/10.1016/j.ijcha.2020.100595.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vernikos, J., and Schneider, V. S. (2010) Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review, Gerontology, 56, 157-166, https://doi.org/10.1159/000252852.

    Article  PubMed  Google Scholar 

  5. Wang, E. (1999) Age-dependent atrophy and microgravity travel: what do they have in common? FASEB J., 13, S167-S174, https://doi.org/10.1096/fasebj.13.9001.s167.

    Article  PubMed  Google Scholar 

  6. Biolo, G., Heer, M., Narici, M., and Strollo, F. (2003) Microgravity as a model of ageing, Curr. Opin. Clin. Nutr. Metab. Care, 6, 31-40, https://doi.org/10.1097/00075197-200301000-00006.

    Article  PubMed  Google Scholar 

  7. Strollo, F., Gentile, S., Strollo, G., Mambro, A., and Vernikos, J. (2018) Recent progress in space physiology and aging, Front. Physiol., 9, 1551, https://doi.org/10.3389/fphys.2018.01551.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burger, E. H., and Klein-Nulend, J. (1998) Microgravity and bone cell mechanosensitivity, Bone, 22, 127S-130S, https://doi.org/10.1016/s8756-3282(98)00010-6.

    Article  CAS  PubMed  Google Scholar 

  9. Keune, J. A., Branscum, A. J., Iwaniec, U. T., and Turner, R. T. (2015) Effects of spaceflight on bone microarchitecture in the axial and appendicular skeleton in growing ovariectomized rats, Sci. Rep., 5, 18671, https://doi.org/10.1038/srep18671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerbaix, M., Gnyubkin, V., Farlay, D., Olivier, C., Ammann, P., Courbon, G., Laroche, N., Genthial, R., Follet, H., Peyrin, F., Shenkman, B., Gauquelin-Koch, G., and Vico, L. (2017) One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons, Sci. Rep., 7, 2659, https://doi.org/10.1038/s41598-017-03014-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stavnichuk, M., Mikolajewicz, N., Corlett, T., Morris, M., and Komarova, S. V. (2020) A systematic review and meta-analysis of bone loss in space travelers, NPJ Microgravity, 6, 13, https://doi.org/10.1038/s41526-020-0103-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crucian, B., Simpson, R. J., Mehta, S., Stowe, R., Chouker, A., Hwang, S. A., Actor, J. K., Salam, A. P., Pierson, D., and Sams, C. (2014) Terrestrial stress analogs for spaceflight associated immune system dysregulation, Brain Behav. Immun., 39, 23-32, https://doi.org/10.1016/j.bbi.2014.01.011.

    Article  CAS  PubMed  Google Scholar 

  13. Sofronova, S. I., Tarasova, O. S., Gaynullina, D., Borzykh, A. A., Behnke, B. J., Stabley, J. N., McCullough, D. J., Maraj, J. J., Hanna, M., Muller-Delp, J. M., Vinogradova, O. L., and Delp, M. D. (2015) Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice, J. Appl. Physiol., 118, 830-838, https://doi.org/10.1152/japplphysiol.00976.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hughson, R. L., Yee, N. J., and Greaves, D. K. (2016) Elevated end-tidal Pco2 during long-duration spaceflight, Aerospace Med. Hum. Perform., 87, 894-897, https://doi.org/10.3357/AMHP.4598.2016.

    Article  Google Scholar 

  15. Shen, H., Lim, C., Schwartz, A. G., Andreev-Andrievskiy, A., Deymier, A. C., and Thomopoulos, S. (2017) Effects of spaceflight on the muscles of the murine shoulder, FASEB J., 31, 5466-5477, https://doi.org/10.1096/fj.201700320R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Novikov, V. E., and Ilyin, E. A. (1981) Age-related reactions of rat bones to their unloading, Aviat. Space Environ. Med., 52, 551-553.

    CAS  PubMed  Google Scholar 

  17. Strollo, F., Riondino, G., Harris, B., Strollo, G., Casarosa, E., Mangrossa, N., Ferretti, C., and Luisi, M. (1998) The effect of microgravity on testicular androgen secretion, Aviat. Space Environ. Med., 69, 133-136.

    CAS  PubMed  Google Scholar 

  18. Blaber, E. A., Dvorochkin, N., Lee, C., Alwood, J. S., Yousuf, R., Pianetta, P., Globus, R. K., Burns, B. P., and Almeida, E. A. (2013) Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21, PLoS One, 8, e61372, https://doi.org/10.1371/journal.pone.0061372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luxton, J. J., McKenna, M. J., Lewis, A., Taylor, L. E., George, K. A., Dixit, S. M., Moniz, M., Benegas, W., Mackay, M. J., Mozsary, C., Butler, D., Bezdan, D., Meydan, C., Crucian, B. E., Zwart, S. R., Smith, S. M., Mason, C. E., and Bailey, S. M. (2020) Telomere Length dynamics and DNA damage responses associated with long-duration spaceflight, Cell Rep., 33, 108457, https://doi.org/10.1016/j.celrep.2020.108457.

    Article  CAS  PubMed  Google Scholar 

  20. Zhuikova, S. E., and Nagovitsyn, R. S. (2021) Influence of running on some physiological and molecular biological markers of human aging, Hum. Physiol., 47, 587-594, https://doi.org/10.1134/S0362119721050133.

    Article  Google Scholar 

  21. Simoes, H. G., Sousa, C. V., Dos Santos Rosa, T., da Silva Aguiar, S., Deus, L. A., Rosa, E. C. C. C., Amato, A. A., and Andrade, R. V. (2017) Longer telomere length in elite master sprinters: relationship to performance and body composition, Int. J. Sports Med., 38, 1111-1116, https://doi.org/10.1055/s-0043-120345.

    Article  CAS  PubMed  Google Scholar 

  22. Prasad, B., Grimm, D., Strauch, S. M., Erzinger, G. S., Corydon, T. J., Lebert, M., Magnusson, N. E., Infanger, M., Richter, P., and Krüger, M. (2020) Influence of microgravity on apoptosis in cells, tissues, and other systems in vivo and in vitro, Int. J. Mol. Sci., 21, 9373, https://doi.org/10.3390/ijms21249373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernando, H. J., and Bowers, D. (2021) Neuroendocrine Theory of Aging, in Encyclopedia of Gerontology and Population Aging (Gu, D., and Dupre, M. E., eds) Springer, Cham, https://doi.org/10.1007/978-3-030-22009-9_673.

  24. Dilman, V. M., Revskoy, S. Y., and Golubev, A. G. (1986) Neuroendocrine-ontogenetic mechanism of aging: toward an integrated theory of aging, Int. Rev. Neurobiol., 28, 89-156, https://doi.org/10.1016/s0074-7742(08)60107-5.

    Article  CAS  PubMed  Google Scholar 

  25. Olovnikov, A. (2005) Lunasensor, infradian rhythms, telomeres, and the chronomere program of aging, Ann. NY Acad. Sci., 1057, 112-132, https://doi.org/10.1196/annals.1356.006.

    Article  CAS  PubMed  Google Scholar 

  26. Olovnikov, A. M. (2015) Chronographic theory of development, aging, and origin of cancer: role of chronomeres and printomeres, Curr. Aging Sci., 8, 76-88, https://doi.org/10.2174/1874609808666150422114916.

    Article  CAS  PubMed  Google Scholar 

  27. Olovnikov, A. M. (2022) Planetary metronome as a regulator of lifespan and aging rate: the metronomic hypothesis, Biochemistry (Moscow), 87, 1640-1650, https://doi.org/10.1134/S0006297922120197.

    Article  CAS  PubMed  Google Scholar 

  28. Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115, https://doi.org/10.1186/gb-2013-14-10-r115.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Petkovich, D. A., Podolskiy, D. I., Lobanov, A. V., Lee, S. G., Miller, R. A., and Gladyshev, V. N. (2017) Using DNA methylation profiling to evaluate biological age and longevity interventions, Cell Metab., 25, 954-960.e6, https://doi.org/10.1016/j.cmet.2017.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013) The hallmarks of aging, Cell153, 1194-1217, https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McHugh, D., and Gil, J. (2018) Senescence and aging: causes, consequences, and therapeutic avenues, J. Cell Biol., 217, 65-77, https://doi.org/10.1083/jcb.201708092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell Biol., 8, 729-740, https://doi.org/10.1038/nrm2233.

    Article  CAS  PubMed  Google Scholar 

  33. Ratushnyy, A. Y., Rudimova, Y. V., and Buravkova, L. B. (2020) Replicative senescence and expression of autophagy genes in mesenchymal stromal cells, Biochemistry (Moscow), 85, 1169-1177, https://doi.org/10.1134/S0006297920100053.

    Article  CAS  PubMed  Google Scholar 

  34. Kuilman, T., Michaloglou, C., Mooi, W. J., and Peeper, D. S. (2010) The essence of senescence, Genes Dev., 24, 2463-2479, https://doi.org/10.1101/gad.1971610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salama, R., Sadaie, M., Hoare, M., and Narita, M. (2014) Cellular senescence and its effector programs, Genes Dev., 28, 99-114, https://doi.org/10.1101/gad.235184.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ratushnyy, A. Y., and Buravkova, L. B. (2020) Cell senescence and mesenchymal stromal cells, Hum. Physiol., 46, 85-93, https://doi.org/10.1134/S0362119720010132.

    Article  Google Scholar 

  37. Imai, S., and Guarente, L. (2014) NAD+ and sirtuins in aging and disease, Trends Cell Biol., 24, 464-471, https://doi.org/10.1016/j.tcb.2014.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. USA, 92, 9363-9367, https://doi.org/10.1073/pnas.92.20.9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Narita, M., Nũnez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J., and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence, Cell, 113, 703-716, https://doi.org/10.1016/s0092-8674(03)00401-x.

    Article  CAS  PubMed  Google Scholar 

  40. Collado, M., Blasco, M. A., and Serrano, M. (2007) Cellular senescence in cancer and aging, Cell, 130, 223-233, https://doi.org/10.1016/j.cell.2007.07.003.

    Article  CAS  PubMed  Google Scholar 

  41. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  42. Jun, J. I., and Lau, L. F. (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing, Nat. Cell Biol., 12, 676-685, https://doi.org/10.1038/ncb2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noronha, N. C., Mizukami, A., Caliári-Oliveira, C., Cominal, J. G., Rocha, J. L. M., Covas, D. T., Swiech, K., and Malmegrim, K. C. R. (2019) Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies, Stem Cell Res. Ther., 10, 131, https://doi.org/10.1186/s13287-019-1224-y.

    Article  PubMed  Google Scholar 

  44. Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585-621, https://doi.org/10.1016/0014-4827(61)90192-6.

    Article  CAS  PubMed  Google Scholar 

  45. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Dokl. Akad. Nauk SSSR, 201, 1496-1499.

    CAS  PubMed  Google Scholar 

  46. Victorelli, S., and Passos, J. F. (2017) Telomeres and cell senescence – size matters not, EBioMedicine, 21, 14-20, https://doi.org/10.1016/j.ebiom.2017.03.027.

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Magalhães, J. P., and Passos, J. F. (2018) Stress, cell senescence and organismal ageing, Mech. Ageing Dev., 170, 2-9, https://doi.org/10.1016/j.mad.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  48. Gruber, J., Schaffer, S., and Halliwell, B. (2008) The mitochondrial free radical theory of ageing – where do we stand? Front. Biosci., 13, 6554-6579, https://doi.org/10.2741/3174.

    Article  CAS  PubMed  Google Scholar 

  49. Vizioli, M. G., Liu, T., Miller, K. N., Robertson, N. A., Gilroy, K., Lagnado, A. B., Perez-Garcia, A., Kiourtis, C., Dasgupta, N., Lei, X., Kruger, P. J., Nixon, C., Clark, W., Jurk, D., Bird, T. G., Passos, J. F., Berger, S. L., Dou, Z., and Adams, P. D. (2020) Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence, Genes Dev., 34, 428-445, https://doi.org/10.1101/gad.331272.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Von Zglinicki, T. (2002) Oxidative stress shortens telomeres, Trends Biochem. Sci., 27, 339-344, https://doi.org/10.1016/s0968-0004(02)02110-2.

    Article  CAS  PubMed  Google Scholar 

  51. Campisi, J. (2013) Aging, cellular senescence, and cancer, Annu. Rev. Physiol., 75, 685-705, https://doi.org/10.1146/annurev-physiol-030212-183653.

    Article  CAS  PubMed  Google Scholar 

  52. Sherr, C. J., and Roberts, J. M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression, Genes Dev., 13, 1501-1512, https://doi.org/10.1101/gad.13.12.1501.

    Article  CAS  PubMed  Google Scholar 

  53. Sherr, C. J., and McCormick, F. (2002) The RB and p53 pathways in cancer, Cancer Cell, 2, 103-112, https://doi.org/10.1016/s1535-6108(02)00102-2.

    Article  CAS  PubMed  Google Scholar 

  54. Tharp, K. M., Higuchi-Sanabria, R., Timblin, G. A., Ford, B., Garzon-Coral, C., Schneider, C., Muncie, J. M., Stashko, C., Daniele, J. R., Moore, A. S., Frankino, P. A., Homentcovschi, S., Manoli, S. S., Shao, H., Richards, A. L., Chen, K. H., Hoeve, J. T., Ku, G. M., Hellerstein, M., Nomura, D. K., et al. (2021) Adhesion-mediated mechanosignaling forces mitohormesis, Cell Metab., 33, 1322-1341.e13, https://doi.org/10.1016/j.cmet.2021.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duan, J. L., Ruan, B., Song, P., Fang, Z. Q., Yue, Z. S., Liu, J. J., Dou, G. R., Han, H., and Wang, L. (2022) Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis, Hepatology, 75, 584-599, https://doi.org/10.1002/hep.32209.

    Article  CAS  PubMed  Google Scholar 

  56. Van Loon, J. W. A. (2007) Some history and use of the random positioning machine, RPM, in gravity related research, Adv. Space Res., 39, 1161-1165, https://doi.org/10.1016/j.asr.2007.02.016.

    Article  Google Scholar 

  57. Kopp, S., Warnke, E., Wehland, M., Aleshcheva, G., Magnusson, N. E., Hemmersbach, R., Corydon, T. J., Bauer, J., Infanger, M., and Grimm, D. (2015) Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity, Sci. Rep., 5, 16691, https://doi.org/10.1038/srep16691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wuest, S. L., Richard, S., Kopp, S., Grimm, D., and Egli, M. (2015) Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture, BioMed Res. Int., 2015, 971474, https://doi.org/10.1155/2015/971474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, J., Zhang, J., Bai, S., Wang, G., Mu, L., Sun, B., Wang, D., Kong, Q., Liu, Y., Yao, X., Xu, Y., and Li, H. (2009) Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells, Neurochem. Int., 55, 710-716, https://doi.org/10.1016/j.neuint.2009.07.002.

    Article  CAS  PubMed  Google Scholar 

  60. Kapitonova, M. Y., Muid, S., Froemming, G. R., Yusoff, W. N., Othman, S., Ali, A. M., and Nawawi, H. M. (2012) Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC, Malays. J. Pathol., 34, 103-113.

    CAS  PubMed  Google Scholar 

  61. Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Magnusson, N., Infanger, M., Grosse, J., Eilles, C., Sundaresan, A., and Grimm, D. (2014) The impact of simulated and real microgravity on bone cells and mesenchymal stem cells, BioMed Res. Int., 2014, 928507, https://doi.org/10.1155/2014/928507.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Winkelmaier, G., Jabbari, K., Chien, L. C., Grabham, P., Parvin, B., and Pluth, J. (2023) Influence of simulated microgravity on mammary epithelial cells grown as 2D and 3D cultures, Int. J. Mol. Sci., 24, 7615, https://doi.org/10.3390/ijms24087615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ratushnyy, A., Ezdakova, M., Yakubets, D., and Buravkova, L. (2018) Angiogenic activity of human adipose-derived mesenchymal stem cells under simulated microgravity, Stem Cells Dev., 27, 831-837, https://doi.org/10.1089/scd.2017.0262.

    Article  CAS  PubMed  Google Scholar 

  64. Ingber, D. E. (2003) Mechanobiology and diseases of mechanotransduction, Ann. Med., 35, 564-577, https://doi.org/10.1080/07853890310016333.

    Article  PubMed  Google Scholar 

  65. Louis, F., Deroanne, C., Nusgens, B., Vico, L., and Guignandon, A. (2015) RhoGTPases as key players in mammalian cell adaptation to microgravity, BioMed Res. Int., 2015, 747693, https://doi.org/10.1155/2015/747693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mao, X., Chen, Z., Luo, Q., Zhang, B., and Song, G. (2016) Simulated microgravity inhibits the migration of mesenchymal stem cells by remodeling actin cytoskeleton and increasing cell stiffness, Cytotechnology, 68, 2235-2243, https://doi.org/10.1007/s10616-016-0007-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ratushnyy, A. Y., and Buravkova, L. B. (2017) Expression of focal adhesion genes in mesenchymal stem cells under simulated microgravity, Dokl. Biochem. Biophys., 477, 354-356, https://doi.org/10.1134/S1607672917060035.

    Article  CAS  PubMed  Google Scholar 

  68. Buravkova, L., Larina, I., Andreeva, E., and Grigoriev, A. (2021) Microgravity effects on the matrisome, Cells10, 2226, https://doi.org/10.3390/cells10092226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dinarelli, S., Longo, G., Dietler, G., Francioso, A., Mosca, L., Pannitteri, G., Boumis, G., Bellelli, A., and Girasole, M. (2018) Erythrocyte’s aging in microgravity highlights how environmental stimuli shape metabolism and morphology, Sci. Rep., 8, 5277, https://doi.org/10.1038/s41598-018-22870-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takahashi, H., Nakamura, A., and Shimizu, T. (2021) Simulated microgravity accelerates aging of human skeletal muscle myoblasts at the single cell level, Biochem. Biophys. Res. Commun., 578, 115-121, https://doi.org/10.1016/j.bbrc.2021.09.037.

    Article  CAS  PubMed  Google Scholar 

  71. Acharya, A., Nemade, H., Papadopoulos, S., Hescheler, J., Neumaier, F., Schneider, T., Rajendra Prasad, K., Khan, K., Hemmersbach, R., Gusmao, E. G., Mizi, A., Papantonis, A., and Sachinidis, A. (2022) Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes, iScience, 25, 104577, https://doi.org/10.1016/j.isci.2022.104577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Singh, R., Rajput, M., and Singh, R. P. (2021) Simulated microgravity triggers DNA damage and mitochondria-mediated apoptosis through ROS generation in human promyelocytic leukemic cells, Mitochondrion, 61, 114-124, https://doi.org/10.1016/j.mito.2021.09.006.

    Article  CAS  PubMed  Google Scholar 

  73. Kossmehl, P., Shakibaei, M., Cogoli, A., Infanger, M., Curcio, F., Schönberger, J., Eilles, C., Bauer, J., Pickenhahn, H., Schulze-Tanzil, G., Paul, M., and Grimm, D. (2003) Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways, Endocrinology, 144, 4172-4179, https://doi.org/10.1210/en.2002-0171.

    Article  CAS  PubMed  Google Scholar 

  74. Ran, F., An, L., Fan, Y., Hang, H., and Wang, S. (2016) Simulated microgravity potentiates generation of reactive oxygen species in cells, Biophys. Rep., 2, 100-105, https://doi.org/10.1007/s41048-016-0029-0.

    Article  CAS  PubMed  Google Scholar 

  75. Greco, O., Durante, M., Gialanella, G., Grossi, G., Pugliese, M., Scampoli, P., Snigiryova, G., and Obe, G. (2003) Biological dosimetry in Russian and Italian astronauts, Adv. Space Res., 31, 1495-1503, https://doi.org/10.1016/s0273-1177(03)00087-5.

    Article  CAS  PubMed  Google Scholar 

  76. Lu, T., Zhang, Y., Kidane, Y., Feiveson, A., Stodieck, L., Karouia, F., Ramesh, G., Rohde, L., and Wu, H. (2017) Cellular responses and gene expression profile changes due to bleomycin-induced DNA damage in human fibroblasts in space, PLoS One, 12, e0170358, https://doi.org/10.1371/journal.pone.0170358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murphy, M. B., Moncivais, K., and Caplan, A. I. (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine, Exp. Mol. Med., 45, e54, https://doi.org/10.1038/emm.2013.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spees, J. L., Lee, R. H., and Gregory, C. A. (2016) Mechanisms of mesenchymal stem/stromal cell function, Stem Cell Res. Ther., 7, 125, https://doi.org/10.1186/s13287-016-0363-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andreeva, E., Bobyleva, P., Gornostaeva, A., and Buravkova, L. (2017) Interaction of multipotent mesenchymal stromal and immune cells: bidirectional effects, Cytotherapy, 19, 1152-1166, https://doi.org/10.1016/j.jcyt.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  80. Fujii, S., and Miura, Y. (2022) Immunomodulatory and regenerative effects of MSC-derived extracellular vesicles to treat acute GVHD, Stem Cells, 40, 977-990, https://doi.org/10.1093/stmcls/sxac057.

    Article  PubMed  Google Scholar 

  81. Lv, W., Peng, X., Tu, Y., Shi, Y., Song, G., and Luo, Q. (2023) YAP inhibition alleviates simulated microgravity-induced mesenchymal stem cell senescence via targeting mitochondrial dysfunction, Antioxidants, 12, 990, https://doi.org/10.3390/antiox12050990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moretta, L., Uccelli, A., and Pistoia, V. (2015) Mesenchymal stromal cells and immunity: Introductory overview, Immunol. Lett., 168, 127-128, https://doi.org/10.1016/j.imlet.2015.08.010.

    Article  CAS  PubMed  Google Scholar 

  83. Yatagai, F., Honma, M., Dohmae, N., and Ishioka, N. (2019) Biological effects of space environmental factors: A possible interaction between space radiation and microgravity, Life Sci. Space Res., 20, 113-123, https://doi.org/10.1016/j.lssr.2018.10.004.

    Article  Google Scholar 

  84. Moya, I. M., and Halder, G. (2019) Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine, Nat. Rev. Mol. Cell Biol., 20, 211-226, https://doi.org/10.1038/s41580-018-0086-y.

    Article  CAS  PubMed  Google Scholar 

  85. Pobbati, A. V., and Hong, W. (2020) A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy, Theranostics, 10, 3622-3635, https://doi.org/10.7150/thno.40889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R. M., Marquess, D., Dananberg, J., and van Deursen, J. M. (2017) Senescent cells: an emerging target for diseases of ageing, Nat. Rev. Drug Discov., 16, 718-735, https://doi.org/10.1038/nrd.2017.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie, Q., Chen, J., Feng, H., Peng, S., Adams, U., Bai, Y., Huang, L., Li, J., Huang, J., Meng, S., and Yuan, Z. (2013) YAP/TEAD-mediated transcription controls cellular senescence, Cancer Res., 73, 3615-3624, https://doi.org/10.1158/0008-5472.CAN-12-3793.

    Article  CAS  PubMed  Google Scholar 

  88. Yeung, Y. T., Guerrero-Castilla, A., Cano, M., Muñoz, M. F., Ayala, A., and Argüelles, S. (2019) Dysregulation of the hippo pathway signaling in aging and cancer, Pharmacol. Res., 143, 151-165, https://doi.org/10.1016/j.phrs.2019.03.018.

    Article  CAS  PubMed  Google Scholar 

  89. Pala, R., Cruciani, S., Manca, A., Garroni, G., El Faqir, M. A., Lentini, V., Capobianco, G., Pantaleo, A., and Maioli, M. (2023) Mesenchymal stem cell behavior under microgravity: from stress response to a premature senescence, Int. J. Mol. Sci., 24, 7753, https://doi.org/10.3390/ijms24097753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Turinetto, V., Vitale, E., and Giachino, C. (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy, Int. J. Mol. Sci., 17, 1164, https://doi.org/10.3390/ijms17071164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, Y., Wu, Q., Wang, Y., Li, L., Bu, H., and Bao, J. (2017) Senescence of mesenchymal stem cells (Review), Int. J. Mol. Sci., 39, 775-782, https://doi.org/10.3892/ijmm.2017.2912.

    Article  CAS  Google Scholar 

  92. Merzlikina, N. V., Buravkova, L. B., and Romanov, Y. A. (2004) The primary effects of clinorotation on cultured human mesenchymal stem cells, J. Gravitat. Physiol., 11, P193-P194.

    CAS  Google Scholar 

  93. Gershovich, J. G., and Buravkova, L. B. (2007) Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects, Bull. Exp. Biol. Med., 144, 608-613, https://doi.org/10.1007/s10517-007-0387-1.

    Article  CAS  PubMed  Google Scholar 

  94. Dai, Z. Q., Wang, R., Ling, S. K., Wan, Y. M., and Li, Y. H. (2007) Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells, Cell Prolif., 40, 671-684, https://doi.org/10.1111/j.1365-2184.2007.00461.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yuge, L., Kajiume, T., Tahara, H., Kawahara, Y., Umeda, C., Yoshimoto, R., Wu, S. L., Yamaoka, K., Asashima, M., Kataoka, K., and Ide, T. (2006) Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation, Stem Cells Dev., 15, 921-929, https://doi.org/10.1089/scd.2006.15.921.

    Article  CAS  PubMed  Google Scholar 

  96. Ratushnyy, A. Yu., and Buravkova, L. B. (2016) Functional state of multipotent mesenchymal stromal cells during modeling the effects of microgravity [in Russian], Aviakosm. Ekol. Med., 50, 24-29.

    Google Scholar 

  97. Nakamura, H., Kumei, Y., Morita, S., Shimokawa, H., Ohya, K., and Shinomiya, K. (2003) Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition, Ann. NY Acad. Sci., 1010, 143-147, https://doi.org/10.1196/annals.1299.023.

    Article  CAS  PubMed  Google Scholar 

  98. Kim, M., Kim, C., Choi, Y. S., Kim, M., Park, C., and Suh, Y. (2012) Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects, Mech. Ageing Dev., 133, 215-225, https://doi.org/10.1016/j.mad.2012.03.014.

    Article  PubMed  Google Scholar 

  99. Despars, G., Carbonneau, C. L., Bardeau, P., Coutu, D. L., and Beauséjour, C. M. (2013) Loss of the osteogenic differentiation potential during senescence is limited to bone progenitor cells and is dependent on p53, PLoS One, 8, e73206, https://doi.org/10.1371/journal.pone.0073206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, Y. K., Ogando, C. R., Wang See, C., Chang, T. Y., and Barabino, G. A. (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro, Stem Cell Res. Ther., 9, 131, https://doi.org/10.1186/s13287-018-0876-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., and Ho, A. D. (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process, PLoS One, 3, e2213, https://doi.org/10.1371/journal.pone.0002213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Digirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., and Prockop, D. J. (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate, Br. J. Haematol., 107, 275-281, https://doi.org/10.1046/j.1365-2141.1999.01715.x.

    Article  CAS  PubMed  Google Scholar 

  103. Cheng, H., Qiu, L., Ma, J., Zhang, H., Cheng, M., Li, W., Zhao, X., and Liu, K. (2011) Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts, Mol. Biol. Rep., 38, 5161-5168, https://doi.org/10.1007/s11033-010-0665-2.

    Article  CAS  PubMed  Google Scholar 

  104. Ratushnyy, A. Yu., and Buravkova, L. B. (2022) Differentiation potential of the mesenchymal stromal cells during replicative senescence [in Russian], Aviakosm. Ekol. Med., 56, 64-69.

    Google Scholar 

  105. Buravkova, L. B., Gershovich, P. M., Gershovich, J. G., and Grigor’ev, A. I. (2010) Mechanisms of gravitational sensitivity of osteogenic precursor cells, Acta Naturae, 2, 28-36, https://doi.org/10.32607/actanaturae.10734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nishikawa, M., Ohgushi, H., Tamai, N., Osuga, K., Uemura, M., Yoshikawa, H., and Myoui, A. (2005) The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering, Cell Transplant., 14, 829-835, https://doi.org/10.3727/000000005783982477.

    Article  PubMed  Google Scholar 

  107. Zayzafoon, M., Gathings, W. E., and McDonald, J. M. (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis, Endocrinology, 145, 2421-2432, https://doi.org/10.1210/en.2003-1156.

    Article  CAS  PubMed  Google Scholar 

  108. Buravkova, L. B., Gershovich, P. M., Gershovich, J. G., and Grigoriev, A. I. (2013) Microgravity and mesenchymal stem cell response, Curr. Biotechnol., 2, 217-225, https://doi.org/10.2174/22115501113029990016.

    Article  CAS  Google Scholar 

  109. Saxena, R., Pan, G., and McDonald, J. M. (2007) Osteoblast and osteoclast differentiation in modeled microgravity, Ann. NY Acad. Sci., 1116, 494-498, https://doi.org/10.1196/annals.1402.033.

    Article  CAS  PubMed  Google Scholar 

  110. Meyers, V. E., Zayzafoon, M., Gonda, S. R., Gathings, W. E., and McDonald, J. M. (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells, J. Cell. Biochem., 93, 697-707, https://doi.org/10.1002/jcb.20229.

    Article  CAS  PubMed  Google Scholar 

  111. Sheyn, D., Pelled, G., Netanely, D., Domany, E., and Gazit, D. (2010) The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study, Tissue Eng. Part A, 16, 3403-3412, https://doi.org/10.1089/ten.tea.2009.0834.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen, J., Liu, R., Yang, Y., Li, J., Zhang, X., Li, J., Wang, Z., and Ma, J. (2011) The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons, Neurosci. Lett., 505, 171-175, https://doi.org/10.1016/j.neulet.2011.10.014.

    Article  CAS  PubMed  Google Scholar 

  113. Xue, L., Li, Y., and Chen, J. (2017) Duration of simulated microgravity affects the differentiation of mesenchymal stem cells, Mol. Med. Rep., 15, 3011-3018, https://doi.org/10.3892/mmr.2017.6357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Coppé, J. P., Desprez, P. Y., Krtolica, A., and Campisi, J. (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression, Annu. Rev. Pathol., 5, 99-118, https://doi.org/10.1146/annurev-pathol-121808-102144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gershovich, Iu. G., and Buravkova, L. B. (2009) Interleukine production in culture of mesenchymal stromal cells of humans during simulation of the microgravity effects [in Russian], Aviakosm. Ecolog. Med., 43, 44-50.

    Google Scholar 

  116. Kurose, T., Takahashi, S., Otsuka, T., Nakagawa, K., Imura, T., Sueda, T., and Yuge, L. (2019) Simulated microgravity-cultured mesenchymal stem cells improve recovery following spinal cord ischemia in rats, Stem Cell Res., 41, 101601, https://doi.org/10.1016/j.scr.2019.101601.

    Article  CAS  PubMed  Google Scholar 

  117. Ratushnyy, A., Yakubets, D., Andreeva, E., and Buravkova, L. (2019) Simulated microgravity modulates the mesenchymal stromal cell response to inflammatory stimulation, Sci. Rep., 9, 9279, https://doi.org/10.1038/s41598-019-45741-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhivodernikov, I. V., Ratushnyy, A. Y., and Buravkova, L. B. (2021) Secretory activity of mesenchymal stromal cells with different degree of commitment under conditions of simulated microgravity, Bull. Exp. Biol. Med., 170, 560-564, https://doi.org/10.1007/s10517-021-05106-6.

    Article  CAS  PubMed  Google Scholar 

  119. Aamodt, J. M., and Grainger, D. W. (2016) Extracellular matrix-based biomaterial scaffolds and the host response, Biomaterials, 86, 68-82, https://doi.org/10.1016/j.biomaterials.2016.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Choudhury, D., Tun, H. W., Wang, T., and Naing, M. W. (2018) Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol., 36, 787-805, https://doi.org/10.1016/j.tibtech.2018.03.003.

    Article  CAS  PubMed  Google Scholar 

  121. Hospodiuk, M., Dey, M., Sosnoski, D., and Ozbolat, I. T. (2017) The bioink: A comprehensive review on bioprintable materials, Biotechnol. Adv., 35, 217-239, https://doi.org/10.1016/j.biotechadv.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  122. Mavrogonatou, E., Pratsinis, H., Papadopoulou, A., Karamanos, N. K., and Kletsas, D. (2019) Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis, Matrix Biol., 75-76, 27-42, https://doi.org/10.1016/j.matbio.2017.10.004.

    Article  CAS  PubMed  Google Scholar 

  123. Choi, H. R., Cho, K. A., Kang, H. T., Lee, J. B., Kaeberlein, M., Suh, Y., Chung, I. K., and Park, S. C. (2011) Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix, Aging Cell, 10, 148-157, https://doi.org/10.1111/j.1474-9726.2010.00654.x.

    Article  CAS  PubMed  Google Scholar 

  124. Sun, Y., Li, W., Lu, Z., Chen, R., Ling, J., Ran, Q., Jilka, R. L., and Chen, X. D. (2011) Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix, FASEB J., 25, 1474-1485, https://doi.org/10.1096/fj.10-161497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lynch, K., and Pei, M. (2014) Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies, Organogenesis, 10, 289-298, https://doi.org/10.4161/15476278.2014.970089.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ebnerasuly, F., Hajebrahimi, Z., Tabaie, S. M., and Darbouy, M. (2018) Simulated microgravity condition alters the gene expression of some ECM and adhesion molecules in adipose derived stem cells, Int. J. Mol. Cell. Med., 7, 146-157, https://doi.org/10.22088/IJMCM.BUMS.7.3.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhivodernikov, I., Ratushnyy, A., and Buravkova, L. (2021) Simulated microgravity remodels extracellular matrix of osteocommitted mesenchymal stromal cells, Int. J. Mol. Sci., 22, 5428, https://doi.org/10.3390/ijms22115428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Carmeliet, G., Nys, G., and Bouillon, R. (1997) Microgravity reduces the differentiation of human osteoblastic MG-63 cells, J. Bone Min. Res., 12, 786-794, https://doi.org/10.1359/jbmr.1997.12.5.786.

    Article  CAS  Google Scholar 

  129. Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., and Wang, J. (2018) Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis, FASEB J., 32, 4444-4458, https://doi.org/10.1096/fj.201700208RR.

    Article  CAS  PubMed  Google Scholar 

  130. Libertini, G. (2014) The programmed aging paradigm: how we get old, Biochemistry (Moscow), 79, 1004-1016, https://doi.org/10.1134/S0006297914100034.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported equally by the program of fundamental research of the State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences (Topic 65.3) and by the Russian Science Foundation (grant no. 21-75-10117).

Author information

Authors and Affiliations

Authors

Contributions

L.B.B. proposed initial concept of the study; L.B.B. and A.Yu.R. wrote the manuscript, comparatively analyzed microgravity- and aging-related effects discussed in the review.

Corresponding author

Correspondence to Ludmila B. Buravkova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. The article contains no description of studies with human subjects or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratushnyy, A.Y., Buravkova, L.B. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms?. Biochemistry Moscow 88, 1763–1777 (2023). https://doi.org/10.1134/S0006297923110081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923110081

Keywords

Navigation