Skip to main content
Log in

Role of Tumor Suppressor PTEN and Its Regulation in Malignant Transformation of Endometrium

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tumor-suppressive effects of PTEN are well-known, but modern evidence suggest that they are not limited to its ability to inhibit pro-oncogenic PI3K/AKT signaling pathway. Features of PTEN structure facilitate its interaction with substrates of different nature and display its activity in various ways both in the cytoplasm and in cell nuclei, which makes it possible to take a broader look at its ability to suppress tumor growth. The possible mechanisms of the loss of PTEN effects are also diverse – PTEN can be regulated at many levels, leading to change in the protein activity or its amount in the cell, while their significance for the development of malignant tumors has yet to be studied. Here we summarize the current data on the PTEN structure, its functions and changes in its regulatory mechanisms during malignant transformation of the cells, focusing on one of the most sensitive to the loss of PTEN types of malignant tumors – endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

AH/EIN:

atypical hyperplasia/endometrial intraepithelial neoplasia

AKT:

protein kinase B, protein serine/threonine kinase family

BH:

benign hyperplasia

C2:

type II calcium-independent C2 domain

CTT:

carboxyl-terminal tail

EC:

endometrial cancer

PDZ-BM:

PDZ-binding motif

PIP3:

phosphatidylinositol-3,4,5-triphosphate

PTEN:

phosphatase and tensin homolog deleted on chromosome 10

TCGA:

The Cancer Genome Atlas

References

  1. Chen, C. Y., Chen, J., He, L., and Stiles, B. L. (2018) PTEN: tumor suppressor and metabolic regulator, Front. Endocrinol. (Lausanne), 9, 338, https://doi.org/10.3389/fendo.2018.00338.

    Article  Google Scholar 

  2. Lee, Y. R., Chen, M., and Pandolfi, P. P. (2018) The functions and regulation of the PTEN tumor suppressor: new modes and prospects, Nat. Rev. Mol. Cell Biol., 19, 547-562, https://doi.org/10.1038/s41580-018-0015-0.

    Article  CAS  PubMed  Google Scholar 

  3. Masson, G. R., and Williams, R. L. (2020) Structural Mechanisms of PTEN Regulation, Cold Spring Harb. Perspect. Med., 10, a036152, https://doi.org/10.1101/cshperspect.a036152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tu, T., Chen, J., Chen, L., and Stiles, B. L. (2020) Dual-specific protein and lipid phosphatase PTEN and its biological functions, Cold Spring Harb. Perspect. Med., 10, a036301, https://doi.org/10.1101/cshperspect.a036301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor, J., and Abdel-Wahab, O. (2019) PTEN isoforms with dual and opposing function, Nat. Cell Biol., 21, 1306-1308, https://doi.org/10.1038/s41556-019-0405-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang, H., He, S., Yang, J., Jia, X., Wang, P., et al. (2014) PTENalpha, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism, Cell Metab., 19, 836-848, https://doi.org/10.1016/j.cmet.2014.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang, H., Chen, X., Yin, Q., Ruan, D., Zhao, X., et al. (2017) PTENbeta is an alternatively translated isoform of PTEN that regulates rDNA transcription, Nat. Commun., 8, 14771, https://doi.org/10.1038/ncomms14771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi, X., Wang, J., Lei, Y., Cong, C., Tan, D., and Zhou, X. (2019) Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review), Mol. Med. Rep., 19, 4529-4535, https://doi.org/10.3892/mmr.2019.10121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alvarez-Garcia, V., Tawil, Y., Wise, H. M., and Leslie, N. R. (2019) Mechanisms of PTEN loss in cancer: it’s all about diversity, Semin. Cancer Biol., 59, 66-79, https://doi.org/10.1016/j.semcancer.2019.02.001.

    Article  CAS  PubMed  Google Scholar 

  10. Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., et al. (2019) PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review), Mol. Med. Rep., 19, 783-791, https://doi.org/10.3892/mmr.2018.9713.

    Article  CAS  PubMed  Google Scholar 

  11. Bell, D. W., and Ellenson, L. H. (2019) Molecular genetics of endometrial carcinoma, Annu. Rev. Pathol., 14, 339-367, https://doi.org/10.1146/annurev-pathol-020117-043609.

    Article  CAS  PubMed  Google Scholar 

  12. Milella, M., Falcone, I., Conciatori, F., Cesta Incani, U., Del Curatolo, A., et al. (2015) PTEN: multiple functions in human malignant tumors, Front. Oncol., 5, 24, https://doi.org/10.3389/fonc.2015.00024.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Noorolyai, S., Shajari, N., Baghbani, E., Sadreddini, S., and Baradaran, B. (2019) The relation between PI3K/AKT signalling pathway and cancer, Gene, 698, 120-128, https://doi.org/10.1016/j.gene.2019.02.076.

    Article  CAS  PubMed  Google Scholar 

  14. Gu, T., Zhang, Z., Wang, J., Guo, J., Shen, W. H., and Yin, Y. (2011) CREB is a novel nuclear target of PTEN phosphatase, Cancer Res., 71, 2821-2825, https://doi.org/10.1158/0008-5472.CAN-10-3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, Y., Wang, J., Chandarlapaty, S., Cross, J., Thompson, C., et al. (2014) PTEN is a protein tyrosine phosphatase for IRS1, Nat. Struct. Mol. Biol., 21, 522-527, https://doi.org/10.1038/nsmb.2828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuchay, S., Giorgi, C., Simoneschi, D., Pagan, J., Missiroli, S., et al. (2017) PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumor growth, Nature, 546, 554-558, https://doi.org/10.1038/nature22965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Planchon, S. M., Waite, K. A., and Eng, C. (2008) The nuclear affairs of PTEN, J. Cell Sci., 121, 249-253, https://doi.org/10.1242/jcs.022459.

    Article  CAS  PubMed  Google Scholar 

  18. Chung, J. H., Ginn-Pease, M. E., and Eng, C. (2005) Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein, Cancer Res., 65, 4108-4116, https://doi.org/10.1158/0008-5472.CAN-05-0124.

    Article  CAS  PubMed  Google Scholar 

  19. Trotman, L. C., Wang, X., Alimonti, A., Chen, Z., Teruya-Feldstein, J., et al. (2007) Ubiquitination regulates PTEN nuclear import and tumor suppression, Cell, 128, 141-156, https://doi.org/10.1016/j.cell.2006.11.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, M. S., Salmena, L., and Pandolfi, P. P. (2012) The functions and regulation of the PTEN tumor suppressor, Nat. Rev. Mol. Cell Biol., 13, 283-296, https://doi.org/10.1038/nrm3330.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, J., and Yin, Y. (2020) PTEN in chromatin remodeling, Cold Spring Harb. Perspect. Med., 10, a036160, https://doi.org/10.1101/cshperspect.a036160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, A. G., Piluso, L. G., Cai, X., Wei, G., Sellers, W. R., et al. (2006) Mechanistic insights into maintenance of high p53 acetylation by PTEN, Mol. Cell, 23, 575-587, https://doi.org/10.1016/j.molcel.2006.06.028.

    Article  CAS  PubMed  Google Scholar 

  23. Freeman, D. J., Li, A. G., Wei, G., Li, H. H., Kertesz, N., et al. (2003) PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms, Cancer Cell, 3, 117-130, https://doi.org/10.1016/s1535-6108(03)00021-7.

    Article  CAS  PubMed  Google Scholar 

  24. Shen, W. H., Balajee, A. S., Wang, J., Wu, H., Eng, C., et al. (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity, Cell, 128, 157-170, https://doi.org/10.1016/j.cell.2006.11.042.

    Article  CAS  PubMed  Google Scholar 

  25. Chung, J. H., Ostrowski, M. C., Romigh, T., Minaguchi, T., Waite, K. A., et al. (2006) The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation, Hum. Mol. Genet., 15, 2553-2559, https://doi.org/10.1093/hmg/ddl177.

    Article  CAS  PubMed  Google Scholar 

  26. Chung, J. H., and Eng, C. (2005) Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis, Cancer Res., 65, 8096-8100, https://doi.org/10.1158/0008-5472.CAN-05-1888.

    Article  CAS  PubMed  Google Scholar 

  27. Song, M. S., Carracedo, A., Salmena, L., Song, S. J., Egia, A., et al. (2011) Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner, Cell, 144, 187-199, https://doi.org/10.1016/j.cell.2010.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, D., Lu, X., Wang, G., Lan, Z., Liao, W., et al. (2017) Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer, Nature, 542, 484-488, https://doi.org/10.1038/nature21357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bermudez Brito, M., Goulielmaki, E., and Papakonstanti, E. A. (2015) Focus on PTEN regulation, Front. Oncol., 5, 166, https://doi.org/10.3389/fonc.2015.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Salmena, L., Carracedo, A., and Pandolfi, P. P. (2008) Tenets of PTEN tumor suppression, Cell, 133, 403-414, https://doi.org/10.1016/j.cell.2008.04.013.

    Article  CAS  PubMed  Google Scholar 

  31. Mighell, T. L., Evans-Dutson, S., and O’Roak, B. J. (2018) A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships, Am. J. Hum. Genet., 102, 943-955, https://doi.org/10.1016/j.ajhg.2018.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hasle, N., Matreyek, K. A., and Fowler, D. M. (2019) The impact of genetic variants on PTEN molecular functions and cellular phenotypes, Cold Spring Harb. Perspect. Med., 9, a036228, https://doi.org/10.1101/cshperspect.a036228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nussinov, R., Zhang, M., Tsai, C. J., and Jang, H. (2021) Phosphorylation and driver mutations in PI3Kalpha and PTEN autoinhibition, Mol. Cancer Res., 19, 543-548, https://doi.org/10.1158/1541-7786.MCR-20-0818.

    Article  CAS  PubMed  Google Scholar 

  34. Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., et al. (2019) COSMIC: the catalogue of somatic mutations in cancer, Nucleic Acids Res., 47, D941-D947, https://doi.org/10.1093/nar/gky1015.

    Article  CAS  PubMed  Google Scholar 

  35. Han, S. Y., Kato, H., Kato, S., Suzuki, T., Shibata, H., et al. (2000) Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay, Cancer Res., 60, 3147-3151.

    CAS  PubMed  Google Scholar 

  36. Leslie, N. R., and Longy, M. (2016) Inherited PTEN mutations and the prediction of phenotype, Semin. Cell Dev. Biol., 52, 30-38, https://doi.org/10.1016/j.semcdb.2016.01.030.

    Article  CAS  PubMed  Google Scholar 

  37. Sun, Z., Huang, C., He, J., Lamb, K. L., Kang, X., et al. (2014) PTEN C-terminal deletion causes genomic instability and tumor development, Cell Rep., 6, 844-854, https://doi.org/10.1016/j.celrep.2014.01.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., et al. (2001) Regulation of PTEN transcription by p53, Mol. Cell, 8, 317-325, https://doi.org/10.1016/s1097-2765(01)00323-9.

    Article  CAS  PubMed  Google Scholar 

  39. Patel, L., Pass, I., Coxon, P., Downes, C. P., Smith, S. A., and Macphee, C. H. (2001) Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN, Curr. Biol., 11, 764-768, https://doi.org/10.1016/s0960-9822(01)00225-1.

    Article  CAS  PubMed  Google Scholar 

  40. Virolle, T., Adamson, E. D., Baron, V., Birle, D., Mercola, D., et al. (2001) The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling, Nat. Cell. Biol., 3, 1124-1128, https://doi.org/10.1038/ncb1201-1124.

    Article  CAS  PubMed  Google Scholar 

  41. Shen, Y. H., Zhang, L., Gan, Y., Wang, X., Wang, J., et al. (2006) Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells, J. Biol. Chem., 281, 7727-7736, https://doi.org/10.1074/jbc.M511105200.

    Article  CAS  PubMed  Google Scholar 

  42. Nakanishi, A., Kitagishi, Y., Ogura, Y., and Matsuda, S. (2014) The tumor suppressor PTEN interacts with p53 in hereditary cancer (Review), Int. J. Oncol., 44, 1813-1819, https://doi.org/10.3892/ijo.2014.2377.

    Article  CAS  PubMed  Google Scholar 

  43. Tang, Y., and Eng, C. (2006) p53 down-regulates phosphatase and tensin homologue deleted on chromosome 10 protein stability partially through caspase-mediated degradation in cells with proteasome dysfunction, Cancer Res., 66, 6139-6148, https://doi.org/10.1158/0008-5472.CAN-06-0772.

    Article  CAS  PubMed  Google Scholar 

  44. Tang, Y., and Eng, C. (2006) PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner, Cancer Res., 66, 736-742, https://doi.org/10.1158/0008-5472.CAN-05-1557.

    Article  CAS  PubMed  Google Scholar 

  45. Escriva, M., Peiro, S., Herranz, N., Villagrasa, P., Dave, N., et al. (2008) Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis, Mol. Cell Biol., 28, 1528-1540, https://doi.org/10.1128/MCB.02061-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uygur, B., Abramo, K., Leikina, E., Vary, C., Liaw, L., et al. (2015) SLUG is a direct transcriptional repressor of PTEN tumor suppressor, Prostate, 75, 907-916, https://doi.org/10.1002/pros.22974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hettinger, K., Vikhanskaya, F., Poh, M. K., Lee, M. K., de Belle, I., et al. (2007) c-Jun promotes cellular survival by suppression of PTEN, Cell Death Differ., 14, 218-229, https://doi.org/10.1038/sj.cdd.4401946.

    Article  CAS  PubMed  Google Scholar 

  48. Song, L. B., Li, J., Liao, W. T., Feng, Y., Yu, C. P., et al. (2009) The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells, J. Clin. Invest., 119, 3626-3636, https://doi.org/10.1172/JCI39374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palomero, T., Sulis, M. L., Cortina, M., Real, P. J., Barnes, K., et al. (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia, Nat. Med., 13, 1203-1210, https://doi.org/10.1038/nm1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Whelan, J. T., Forbes, S. L., and Bertrand, F. E. (2007) CBF-1 (RBP-J kappa) binds to the PTEN promoter and regulates PTEN gene expression, Cell Cycle, 6, 80-84, https://doi.org/10.4161/cc.6.1.3648.

    Article  CAS  PubMed  Google Scholar 

  51. Kang, Y. H., Lee, H. S., and Kim, W. H. (2002) Promoter methylation and silencing of PTEN in gastric carcinoma, Lab. Invest., 82, 285-291, https://doi.org/10.1038/labinvest.3780422.

    Article  CAS  PubMed  Google Scholar 

  52. Goel, A., Arnold, C. N., Niedzwiecki, D., Carethers, J. M., Dowell, J. M., et al. (2004) Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers, Cancer Res., 64, 3014-3021, https://doi.org/10.1158/0008-5472.can-2401-2.

    Article  CAS  PubMed  Google Scholar 

  53. Luo, S., Chen, J., and Mo, X. (2016) The association of PTEN hypermethylation and breast cancer: a meta-analysis, Onco Targets Ther., 9, 5643-5650, https://doi.org/10.2147/OTT.S111684.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lu, J., Jeong, H. W., Kong, N., Yang, Y., Carroll, J., et al. (2009) Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex, PLoS One, 4, e5577, https://doi.org/10.1371/journal.pone.0005577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sellars, E., Gabra, M., and Salmena, L. (2020) The complex landscape of PTEN mRNA regulation, Cold Spring Harb. Perspect. Med., 10, a036236, https://doi.org/10.1101/cshperspect.a036236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, W., Zhang, T., Guo, L., and Huang, L. (2018) Regulation of PTEN expression by noncoding RNAs, J. Exp. Clin. Cancer Res., 37, 223, https://doi.org/10.1186/s13046-018-0898-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215-233, https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Poliseno, L., Salmena, L., Riccardi, L., Fornari, A., Song, M. S., et al. (2010) Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation, Sci. Signal., 3, ra29, https://doi.org/10.1126/scisignal.2000594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mu, P., Han, Y. C., Betel, D., Yao, E., Squatrito, M., et al. (2009) Genetic disSection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas, Genes Dev., 23, 2806-2811, https://doi.org/10.1101/gad.1872909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, P., Guo, X., Zhang, L., Zhang, W., Zhou, Q., et al. (2017) MiR-200c is a cMyc-activated miRNA that promotes nasopharyngeal carcinoma by downregulating PTEN, Oncotarget, 8, 5206-5218, https://doi.org/10.18632/oncotarget.14123.

    Article  PubMed  Google Scholar 

  61. Hill, M., and Tran, N. (2021) miRNA interplay: mechanisms and consequences in cancer, Dis. Model Mech., 14, dmm047662, https://doi.org/10.1242/dmm.047662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, Y. L., Wang, F. S., Li, S. C., Tiao, M. M., and Huang, Y. H. (2017) MicroRNA-29a alleviates bile duct ligation exacerbation of hepatic fibrosis in mice through epigenetic control of methyltransferases, Int. J. Mol. Sci., 18, 192, https://doi.org/10.3390/ijms18010192.

    Article  CAS  PubMed Central  Google Scholar 

  63. Zheng, J., Wu, C., Lin, Z., Guo, Y., Shi, L., et al. (2014) Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation--a novel mechanism suppressing liver fibrosis, FEBS J., 281, 88-103, https://doi.org/10.1111/febs.12574.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, L., Yao, J., Sun, H., He, K., Tong, D., et al. (2017) MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A, Oncol. Lett., 13, 329-338, https://doi.org/10.3892/ol.2016.5423.

    Article  CAS  PubMed  Google Scholar 

  65. Qadir, X. V., Han, C., Lu, D., Zhang, J., and Wu, T. (2014) miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway, Am. J. Pathol., 184, 2355-2364, https://doi.org/10.1016/j.ajpath.2014.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haddadi, N., Lin, Y., Travis, G., Simpson, A. M., Nassif, N. T., et al. (2018) PTEN/PTENP1: “Regulating the regulator of RTK-dependent PI3K/Akt signalling”, new targets for cancer therapy, Mol. Cancer, 17, 37, https://doi.org/10.1186/s12943-018-0803-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kotelevets, L., Trifault, B., Chastre, E., and Scott, M. G. H. (2020) Posttranslational regulation and conformational plasticity of PTEN, Cold Spring Harb. Perspect. Med., 10, a036095, https://doi.org/10.1101/cshperspect.a036095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cordier, F., Chaffotte, A., Terrien, E., Prehaud, C., Theillet, F. X., et al. (2012) Ordered phosphorylation events in two independent cascades of the PTEN C-tail revealed by NMR, J. Am. Chem. Soc., 134, 20533-20543, https://doi.org/10.1021/ja310214g.

    Article  CAS  PubMed  Google Scholar 

  69. Al-Khouri, A. M., Ma, Y., Togo, S. H., Williams, S., and Mustelin, T. (2005) Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta, J. Biol. Chem., 280, 35195-35202, https://doi.org/10.1074/jbc.M503045200.

    Article  CAS  PubMed  Google Scholar 

  70. Bassi, C., Ho, J., Srikumar, T., Dowling, R. J., Gorrini, C., et al. (2013) Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress, Science, 341, 395-399, https://doi.org/10.1126/science.1236188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vazquez, F., Grossman, S. R., Takahashi, Y., Rokas, M. V., Nakamura, N., et al. (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex, J. Biol. Chem., 276, 48627-48630, https://doi.org/10.1074/jbc.C100556200.

    Article  CAS  PubMed  Google Scholar 

  72. Odriozola, L., Singh, G., Hoang, T., and Chan, A. M. (2007) Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain, J. Biol. Chem., 282, 23306-23315, https://doi.org/10.1074/jbc.M611240200.

    Article  CAS  PubMed  Google Scholar 

  73. Chen, J. H., Zhang, P., Chen, W. D., Li, D. D., Wu, X. Q., et al. (2015) ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells, Autophagy, 11, 239-252, https://doi.org/10.1080/15548627.2015.1009767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Choi, B. H., Pagano, M., and Dai, W. (2014) Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle, J. Biol. Chem., 289, 14066-14074, https://doi.org/10.1074/jbc.M114.558155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maccario, H., Perera, N. M., Gray, A., Downes, C. P., and Leslie, N. R. (2010) Ubiquitination of PTEN (phosphatase and tensin homolog) inhibits phosphatase activity and is enhanced by membrane targeting and hyperosmotic stress, J. Biol. Chem., 285, 12620-12628, https://doi.org/10.1074/jbc.M109.072280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, X., Trotman, L. C., Koppie, T., Alimonti, A., Chen, Z., et al. (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN, Cell, 128, 129-139, https://doi.org/10.1016/j.cell.2006.11.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Van Themsche, C., Leblanc, V., Parent, S., and Asselin, E. (2009) X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization, J. Biol. Chem., 284, 20462-20466, https://doi.org/10.1074/jbc.C109.009522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahmed, S. F., Deb, S., Paul, I., Chatterjee, A., Mandal, T., et al. (2012) The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation, J. Biol. Chem., 287, 15996-16006, https://doi.org/10.1074/jbc.M111.321083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuan, L., Lv, Y., Li, H., Gao, H., Song, S., et al. (2015) Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis, Nat. Cell Biol., 17, 1169-1181, https://doi.org/10.1038/ncb3218.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, J., Zhang, P., Wei, Y., Piao, H. L., Wang, W., et al. (2013) Deubiquitylation and stabilization of PTEN by USP13, Nat. Cell Biol., 15, 1486-1494, https://doi.org/10.1038/ncb2874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., et al. (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network, Nature, 455, 813-817, https://doi.org/10.1038/nature07290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, J., Yan, J., Zhang, J., Zhu, S., Wang, Y., et al. (2012) SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane, Nat. Commun., 3, 911, https://doi.org/10.1038/ncomms1919.

    Article  CAS  PubMed  Google Scholar 

  83. Gonzalez-Santamaria, J., Campagna, M., Ortega-Molina, A., Marcos-Villar, L., de la Cruz-Herrera, C. F., et al. (2012) Regulation of the tumor suppressor PTEN by SUMO, Cell Death Dis., 3, e393, https://doi.org/10.1038/cddis.2012.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, S. R., Yang, K. S., Kwon, J., Lee, C., Jeong, W., et al. (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2, J. Biol. Chem., 277, 20336-20342, https://doi.org/10.1074/jbc.M111899200.

    Article  CAS  PubMed  Google Scholar 

  85. Leslie, N. R., Bennett, D., Lindsay, Y. E., Stewart, H., Gray, A., et al. (2003) Redox regulation of PI 3-kinase signalling via inactivation of PTEN, EMBO J., 22, 5501-5510, https://doi.org/10.1093/emboj/cdg513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cao, J., Schulte, J., Knight, A., Leslie, N. R., Zagozdzon, A., et al. (2009) Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity, EMBO J., 28, 1505-1517, https://doi.org/10.1038/emboj.2009.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shen, S. M., Guo, M., Xiong, Z., Yu, Y., Zhao, X. Y., et al. (2015) AIF inhibits tumor metastasis by protecting PTEN from oxidation, EMBO Rep., 16, 1563-1580, https://doi.org/10.15252/embr.201540536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Okumura, K., Mendoza, M., Bachoo, R. M., DePinho, R. A., Cavenee, W. K., et al. (2006) PCAF modulates PTEN activity, J. Biol. Chem., 281, 26562-26568, https://doi.org/10.1074/jbc.M605391200.

    Article  CAS  PubMed  Google Scholar 

  89. Ikenoue, T., Inoki, K., Zhao, B., and Guan, K. L. (2008) PTEN acetylation modulates its interaction with PDZ domain, Cancer Res., 68, 6908-6912, https://doi.org/10.1158/0008-5472.CAN-08-1107.

    Article  CAS  PubMed  Google Scholar 

  90. Jane, P., Gogl, G., Kostmann, C., Bich, G., Girault, V., et al. (2020) Interactomic affinity profiling by holdup assay: acetylation and distal residues impact the PDZome-binding specificity of PTEN phosphatase, PLoS One, 15, e0244613, https://doi.org/10.1371/journal.pone.0244613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meng, Z., Jia, L. F., and Gan, Y. H. (2016) PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumor inhibition, Oncogene, 35, 2333-2344, https://doi.org/10.1038/onc.2015.293.

    Article  CAS  PubMed  Google Scholar 

  92. Chae, H. D., and Broxmeyer, H. E. (2011) SIRT1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species-induced apoptosis in mouse embryonic stem cells, Stem Cells Dev., 20, 1277-1285, https://doi.org/10.1089/scd.2010.0465.

    Article  CAS  PubMed  Google Scholar 

  93. Bazzichetto, C., Conciatori, F., Pallocca, M., Falcone, I., Fanciulli, M., et al. (2019) PTEN as a prognostic/predictive biomarker in cancer: an unfulfilled promise?, Cancers (Basel), 11, https://doi.org/10.3390/cancers11040435.

    Article  CAS  Google Scholar 

  94. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov., 2, 401-404, https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  95. Karlsson, M., Zhang, C., Mear, L., Zhong, W., Digre, A., et al. (2021) A single-cell type transcriptomics map of human tissues, Sci. Adv., 7, eabh2169, https://doi.org/10.1126/sciadv.abh2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., et al. (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia, 19, 649-658, https://doi.org/10.1016/j.neo.2017.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., et al. (2021) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences, Nucleic Acids Res., 49, D437-D451, https://doi.org/10.1093/nar/gkaa1038.

    Article  CAS  PubMed  Google Scholar 

  98. Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., et al. (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets, Nucleic Acids Res., 49, D605-D612, https://doi.org/10.1093/nar/gkaa1074.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, Y., Kwok-Shing Ng, P., Kucherlapati, M., Chen, F., Liu, Y., et al. (2017) A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations, Cancer Cell, 31, 820-832.e823, https://doi.org/10.1016/j.ccell.2017.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, H. P., Meeker, A., Guido, R., Gunter, M. J., Huang, G. S., et al. (2015) PTEN expression in benign human endometrial tissue and cancer in relation to endometrial cancer risk factors, Cancer Causes Control, 26, 1729-1736, https://doi.org/10.1007/s10552-015-0666-5.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Erkanli, S., Kayaselcuk, F., Kuscu, E., Bagis, T., Bolat, F., et al. (2006) Expression of survivin, PTEN and p27 in normal, hyperplastic, and carcinomatous endometrium, Int. J. Gynecol. Cancer, 16, 1412-1418, https://doi.org/10.1111/j.1525-1438.2006.00541.x.

    Article  CAS  PubMed  Google Scholar 

  102. Hutt, S., Tailor, A., Ellis, P., Michael, A., Butler-Manuel, S., et al. (2019) The role of biomarkers in endometrial cancer and hyperplasia: a literature review, Acta Oncol., 58, 342-352, https://doi.org/10.1080/0284186X.2018.1540886.

    Article  PubMed  Google Scholar 

  103. Rao, A. C., Arya, G., and Padma, P. J. (2011) Immunohistochemical phospho tensin tumor suppressor gene staining patterns in endometrial hyperplasias: a 2-year study, Ind. J. Pathol. Microbiol., 54, 264-268, https://doi.org/10.4103/0377-4929.81588.

    Article  Google Scholar 

  104. Mutter, G. L., Lin, M. C., Fitzgerald, J. T., Kum, J. B., and Eng, C. (2000) Changes in endometrial PTEN expression throughout the human menstrual cycle, J. Clin. Endocrinol. Metab., 85, 2334-2338, https://doi.org/10.1210/jcem.85.6.6652.

    Article  CAS  PubMed  Google Scholar 

  105. Guzeloglu-Kayisli, O., Kayisli, U. A., Al-Rejjal, R., Zheng, W., Luleci, G., et al. (2003) Regulation of PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression by estradiol and progesterone in human endometrium, J. Clin. Endocrinol. Metab., 88, 5017-5026, https://doi.org/10.1210/jc.2003-030414.

    Article  CAS  PubMed  Google Scholar 

  106. Choi, J., Jo, M., Lee, E., Hwang, S., and Choi, D. (2017) Aberrant PTEN expression in response to progesterone reduces endometriotic stromal cell apoptosis, Reproduction, 153, 11-21, https://doi.org/10.1530/REP-16-0322.

    Article  CAS  PubMed  Google Scholar 

  107. Guzeloglu Kayisli, O., Kayisli, U. A., Luleci, G., and Arici, A. (2004) In vivo and in vitro regulation of Akt activation in human endometrial cells is oestrogen dependent, Biol. Reprod., 71, 714-721, https://doi.org/10.1095/biolreprod.104.027235.

    Article  CAS  PubMed  Google Scholar 

  108. Hubbard, S. A., and Gargett, C. E. (2010) A cancer stem cell origin for human endometrial carcinoma?, Reproduction, 140, 23-32, https://doi.org/10.1530/REP-09-0411.

    Article  CAS  PubMed  Google Scholar 

  109. Tamaru, S., Kajihara, T., Mizuno, Y., Mizuno, Y., Tochigi, H., et al. (2020) Endometrial microRNAs and their aberrant expression patterns, Med. Mol. Morphol., 53, 131-140, https://doi.org/10.1007/s00795-020-00252-8.

    Article  CAS  PubMed  Google Scholar 

  110. Kuokkanen, S., Chen, B., Ojalvo, L., Benard, L., Santoro, N., et al. (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium, Biol. Reprod., 82, 791-801, https://doi.org/10.1095/biolreprod.109.081059.

    Article  CAS  PubMed  Google Scholar 

  111. Grasso, A., Navarro, R., Balaguer, N., Moreno, I., Alama, P., et al. (2020) Endometrial liquid biopsy provides a miRNA roadmap of the secretory phase of the human endometrium, J. Clin. Endocrinol. Metab., 105, 877-889, https://doi.org/10.1210/clinem/dgz146.

    Article  Google Scholar 

  112. Azhari, F., Pence, S., Hosseini, M. K., Balci, B. K., Cevik, N., et al. (2022) The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure, J. Matern. Fetal Neonatal. Med., 35, 815-825, https://doi.org/10.1080/14767058.2020.1849095.

    Article  CAS  PubMed  Google Scholar 

  113. McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., et al. (2019) The biochemical basis of microRNA targeting efficacy, Science, 366, eaav1741, https://doi.org/10.1126/science.aav1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Takamura, M., Zhou, W., Rombauts, L., and Dimitriadis, E. (2020) The long noncoding RNA PTENP1 regulates human endometrial epithelial adhesive capacity in vitro: implications in infertility, Biol. Reprod., 102, 53-62, https://doi.org/10.1093/biolre/ioz173.

    Article  PubMed  Google Scholar 

  115. Udou, T., Hachisuga, T., Tsujioka, H., and Kawarabayashi, T. (2004) The role of c-jun protein in proliferation and apoptosis of the endometrium throughout the menstrual cycle, Gynecol. Obstet. Invest., 57, 121-126, https://doi.org/10.1159/000075701.

    Article  CAS  PubMed  Google Scholar 

  116. Jonusiene, V., and Sasnauskiene, A. (2021) Notch and endometrial cancer, Adv. Exp. Med. Biol., 1287, 47-57, https://doi.org/10.1007/978-3-030-55031-8_4.

    Article  CAS  PubMed  Google Scholar 

  117. Sarmadi, S., Izadi-Mood, N., Sotoudeh, K., and Tavangar, S. M. (2009) Altered PTEN expression; a diagnostic marker for differentiating normal, hyperplastic and neoplastic endometrium, Diagn. Pathol., 4, 41, https://doi.org/10.1186/1746-1596-4-41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, H., Choi, H. J., Kang, C. S., Lee, H. J., Lee, W. S., et al. (2012) Expression of miRNAs and PTEN in endometrial specimens ranging from histologically normal to hyperplasia and endometrial adenocarcinoma, Mod. Pathol., 25, 1508-1515, https://doi.org/10.1038/modpathol.2012.111.

    Article  CAS  PubMed  Google Scholar 

  119. Raffone, A., Travaglino, A., Saccone, G., Viggiani, M., Giampaolino, P., et al. (2019) PTEN expression in endometrial hyperplasia and risk of cancer: a systematic review and meta-analysis, Arch. Gynecol. Obstet., 299, 1511-1524, https://doi.org/10.1007/s00404-019-05123-x.

    Article  CAS  PubMed  Google Scholar 

  120. Travaglino, A., Raffone, A., Saccone, G., Mascolo, M., Pignatiello, S., et al. (2019) PTEN immunohistochemistry in endometrial hyperplasia: which are the optimal criteria for the diagnosis of precancer?, APMIS, 127, 161-169, https://doi.org/10.1111/apm.12938.

    Article  CAS  PubMed  Google Scholar 

  121. Russo, M., Newell, J. M., Budurlean, L., Houser, K. R., Sheldon, K., et al. (2020) Mutational profile of endometrial hyperplasia and risk of progression to endometrioid adenocarcinoma, Cancer, 126, 2775-2783, https://doi.org/10.1002/cncr.32822.

    Article  CAS  PubMed  Google Scholar 

  122. Sun, H., Enomoto, T., Fujita, M., Wada, H., Yoshino, K., et al. (2001) Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia, Am. J. Clin. Pathol., 115, 32-38, https://doi.org/10.1309/7JX6-B9U9-3P0R-EQNY.

    Article  CAS  PubMed  Google Scholar 

  123. Gbelcova, H., Bakes, P., Priscakova, P., Sisovsky, V., Hojsikova, I., et al. (2015) PTEN sequence analysis in endometrial hyperplasia and endometrial carcinoma in Slovak women, Anal. Cell Pathol. (Amst), 2015, 746856, https://doi.org/10.1155/2015/746856.

    Article  CAS  Google Scholar 

  124. Lac, V., Nazeran, T. M., Tessier-Cloutier, B., Aguirre-Hernandez, R., Albert, A., et al. (2019) Oncogenic mutations in histologically normal endometrium: the new normal?, J. Pathol., 249, 173-181, https://doi.org/10.1002/path.5314.

    Article  CAS  PubMed  Google Scholar 

  125. Snowdon, J., Zhang, X., Childs, T., Tron, V. A., and Feilotter, H. (2011) The microRNA-200 family is upregulated in endometrial carcinoma, PLoS One, 6, e22828, https://doi.org/10.1371/journal.pone.0022828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tang, S., and Dai, Y. (2018) RNA sequencing reveals significant miRNAs in Atypical endometrial hyperplasia, Eur. J. Obstet. Gynecol. Reprod. Biol., 225, 129-135, https://doi.org/10.1016/j.ejogrb.2018.03.025.

    Article  CAS  PubMed  Google Scholar 

  127. Giglio, S., Annibali, V., Cirombella, R., Faruq, O., Volinia, S., et al. (2019) miRNAs as candidate biomarker for the accurate detection of atypical endometrial hyperplasia/endometrial intraepithelial neoplasia, Front. Oncol., 9, 526, https://doi.org/10.3389/fonc.2019.00526.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kovalenko, T. F., Morozova, K. V., Ozolinya, L. A., Lapina, I. A., and Patrushev, L. I. (2018) The PTENP1 pseudogene, unlike the PTEN gene, is methylated in normal endometrium, as well as in endometrial hyperplasias and carcinomas in middle-aged and elderly females, Acta Naturae, 10, 43-50, https://doi.org/10.32607/20758251-2018-10-1-43-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kovalenko, T. F., Sorokina, A. V., Ozolinia, L. A., and Patrushev, L. I. (2013) Pseudogene PTENP1 5′-region methylation in endometrial cancer and hyperplasias [in Russian], Bioorg. Khim., 39, 445-453, https://doi.org/10.1134/s1068162013040109.

    Article  CAS  PubMed  Google Scholar 

  130. Kovalenko, T. F., Morozova, K. V., Pavlyukov, M. S., Anufrieva, K. S., Bobrov, M. Y., et al. (2021) Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related changes in human endometrium, PLoS One, 16, e0243093, https://doi.org/10.1371/journal.pone.0243093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu, M., Zhang, Y., Li, X., Cui, P., Li, J., et al. (2020) Alterations of endometrial epithelial-mesenchymal transition and MAPK signalling components in women with PCOS are partially modulated by metformin in vitro, Mol. Hum. Reprod., 26, 312-326, https://doi.org/10.1093/molehr/gaaa023.

    Article  CAS  PubMed  Google Scholar 

  132. Strissel, P. L., Ellmann, S., Loprich, E., Thiel, F., Fasching, P. A., et al. (2008) Early aberrant insulin-like growth factor signaling in the progression to endometrial carcinoma is augmented by tamoxifen, Int. J. Cancer, 123, 2871-2879, https://doi.org/10.1002/ijc.23900.

    Article  CAS  PubMed  Google Scholar 

  133. Orbo, A., Nilsen, M. N., Arnes, M. S., Pettersen, I., and Larsen, K. (2003) Loss of expression of MLH1, MSH2, MSH6, and PTEN related to endometrial cancer in 68 patients with endometrial hyperplasia, Int. J. Gynecol. Pathol., 22, 141-148, https://doi.org/10.1097/00004347-200304000-00005.

    Article  CAS  PubMed  Google Scholar 

  134. Murali, R., Soslow, R. A., and Weigelt, B. (2014) Classification of endometrial carcinoma: more than two types, Lancet Oncol., 15, e268-e278, https://doi.org/10.1016/S1470-2045(13)70591-6.

    Article  PubMed  Google Scholar 

  135. Levine, D., The Cancer Genome Atlas Research Network (2013) Integrated genomic characterization of endometrial carcinoma, Nature, 497, 67-73, https://doi.org/10.1038/nature12113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Djordjevic, B., Hennessy, B. T., Li, J., Barkoh, B. A., Luthra, R., et al. (2012) Clinical assessment of PTEN loss in endometrial carcinoma: immunohistochemistry outperforms gene sequencing, Mod. Pathol., 25, 699-708, https://doi.org/10.1038/modpathol.2011.208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Salvesen, H. B., Stefansson, I., Kretzschmar, E. I., Gruber, P., MacDonald, N. D., et al. (2004) Significance of PTEN alterations in endometrial carcinoma: a population-based study of mutations, promoter methylation and PTEN protein expression, Int. J. Oncol., 25, 1615-1623, https://doi.org/10.3892/ijo.25.6.1615.

    Article  CAS  PubMed  Google Scholar 

  138. Zysman, M. A., Chapman, W. B., and Bapat, B. (2002) Considerations when analyzing the methylation status of PTEN tumor suppressor gene, Am. J. Pathol., 160, 795-800, https://doi.org/10.1016/S0002-9440(10)64902-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, A., Jiao, Y., Yong, K. J., Wang, F., Gao, C., et al. (2015) SALL4 is a new target in endometrial cancer, Oncogene, 34, 63-72, https://doi.org/10.1038/onc.2013.529.

    Article  CAS  PubMed  Google Scholar 

  140. Wang, Q., Xu, K., Tong, Y., Dai, X., Xu, T., et al. (2020) Novel miRNA markers for the diagnosis and prognosis of endometrial cancer, J. Cell Mol. Med., 24, 4533-4546, https://doi.org/10.1111/jcmm.15111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yoneyama, K., Ishibashi, O., Kawase, R., Kurose, K., and Takeshita, T. (2015) miR-200a, miR-200b and miR-429 are onco-miRs that target the PTEN gene in endometrioid endometrial carcinoma, Anticancer Res., 35, 1401-1410.

    CAS  PubMed  Google Scholar 

  142. Scully, M. M., Palacios-Helgeson, L. K., Wah, L. S., and Jackson, T. A. (2014) Rapid oestrogen signaling negatively regulates PTEN activity through phosphorylation in endometrial cancer cells, Horm. Cancer, 5, 218-231, https://doi.org/10.1007/s12672-014-0184-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, F., Chandrashekar, D. S., Varambally, S., and Creighton, C. J. (2019) Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers, Nat. Commun., 10, 5679, https://doi.org/10.1038/s41467-019-13528-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Van Themsche, C., Chaudhry, P., Leblanc, V., Parent, S., and Asselin, E. (2010) XIAP gene expression and function is regulated by autocrine and paracrine TGF-beta signaling, Mol. Cancer, 9, 216, https://doi.org/10.1186/1476-4598-9-216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cheung, L. W., Hennessy, B. T., Li, J., Yu, S., Myers, A. P., et al. (2011) High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability, Cancer Discov., 1, 170-185, https://doi.org/10.1158/2159-8290.CD-11-0039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. M. Perevalova, V. S. Kobelev, V. G. Sisakyan performed literature search and analysis; A. M. Perevalova wrote the manuscript; L. F. Gulyaeva and V. O. Pustylnyak edited the manuscript.

Corresponding author

Correspondence to Alina M. Perevalova.

Ethics declarations

The authors declare no conflict of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalova, A.M., Kobelev, V.S., Sisakyan, V.G. et al. Role of Tumor Suppressor PTEN and Its Regulation in Malignant Transformation of Endometrium. Biochemistry Moscow 87, 1310–1326 (2022). https://doi.org/10.1134/S0006297922110104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922110104

Keywords

Navigation