Skip to main content
Log in

A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

ADAMTS13:

a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13

CAT:

chloramphenicol acetyltransferase

FRET:

fluorescence resonance energy transfer

mRNA:

messenger RNA

NMR:

Nuclear magnetic resonance

PGK:

phosphoglycerate kinase

P-gp:

P-glycoprotein

RNase A:

Ribonuclease A

tRNA:

transport RNA

References

  1. Crick, F. H., Barnett, L., Brenner, S., and Watts-Tobin, R. J. (1961) General nature of the genetic code for proteins, Nature, 192, 1227-1232.

    Article  CAS  PubMed  Google Scholar 

  2. Nirenberg, M., and Leder, P. (1964) RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of sRNA to ribosomes, Science, 145, 1399-1407.

    Article  CAS  PubMed  Google Scholar 

  3. Leder, P., and Nirenberg, M. (1964) RNA codewords and protein synthesis. II. nucleotide sequence of a valine RNA codeword, Proc. Natl. Acad. Sci. USA, 52, 420-427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernfield, M. R., and Nirenberg, M. W. (1965) RNA codewords and protein synthesis. The nucleotide sequences of multiple codewords for phenylalanine, serine, leucine, and proline, Science, 147, 479-484.

    Article  CAS  PubMed  Google Scholar 

  5. Trupin, J. S., Rottman, F. M., Brimacombe, R. L., Leder, P., Bernfield, M. R., and Nirenberg, M. W. (1965) RNA codewords and protein synthesis, VI. On the nucleotide sequences of degenerate codeword sets for isoleucine, tyrosine, asparagine, and lysine, Proc. Natl. Acad. Sci. USA, 53, 807-811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nirenberg, M., Leder, P., Bernfield, M., Brimacombe, R., Trupin, J., et al. (1965) RNA codewords and protein synthesis, VII. On the general nature of the RNA code, Proc. Natl. Acad. Sci. USA, 53, 1161-1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brimacombe, R., Trupin, J., Nirenberg, M., Leder, P., Bernfield, M., and Jaouni, T. (1965) RNA codewords and protein synthesis, 8. Nucleotide sequences of synonym codons for arginine, valine, cysteine, and alanine, Proc. Natl. Acad. Sci. USA, 54, 954-960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Söll, D., Ohtsuka, E., Jones, D. S., Lohrmann, R., Hayatsu, H., et al. (1965) Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA’s to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids, Proc. Natl. Acad. Sci. USA, 54, 1378-1385.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goel, N. S., Rao, G. S., Ycas, M., Bremermann, H. J., and King, L. (1972) A method for calculating codon frequencies in DNA, J. Theor. Biol., 35, 399-457.

    Article  CAS  PubMed  Google Scholar 

  10. Grantham, R., Gautier, C., Gouy, M., Mercier, R., and Pavé, A. (1980) Codon catalog usage and the genome hypothesis, Nucleic Acids Res., 8, r49-r62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grantham, R., Gautier, C., and Gouy, M. (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type, Nucleic Acids Res., 8, 1893-1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ikemura, T. (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes, J. Mol. Biol., 146, 1-21.

    Article  CAS  PubMed  Google Scholar 

  13. Ikemura, T. (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs, J. Mol. Biol., 158, 573-597.

    Article  CAS  PubMed  Google Scholar 

  14. Bennetzen, J. L., and Hall, B. D. (1982) Codon selection in yeast, J. Biol. Chem., 257, 3026-3031.

    Article  CAS  PubMed  Google Scholar 

  15. Hastings, K. E. M., and Emerson, C. P. Jr. (1983) Codon usage in muscle genes and liver genes, J. Mol. Evol., 19, 214-218.

    Article  CAS  PubMed  Google Scholar 

  16. Ikemura, T. (1985) Codon usage and tRNA content in unicellular and multicellular organisms, Mol. Biol. Evol., 2, 13-34.

    CAS  PubMed  Google Scholar 

  17. Sharp, P. M., Tuohy, T. M., and Mosurski, K. R. (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes, Nucleic Acids Res., 14, 5125-5143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharp, P. M., and Li, W. H. (1987) The Codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res., 15, 1281-1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharp, P. M., Cowe, E., Higgins, D. G., Shields, D. C., Wolfe, K. H., and Wright, F. (1988) , Nucleic Acids Res., 16, 8207-8211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sørensen, M.A., Kurland, C. G., and Pedersen, S. (1989) Codon usage determines translation rate in Escherichia coli, J. Mol. Biol., 207, 365-377.

    Article  PubMed  Google Scholar 

  21. Andersson, S. G., and Kurland, C. G. (1990) Codon preferences in free-living microorganisms, Microbiol. Rev., 54, 198-210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurland, C. G. (1991) Codon bias and gene expression, FEBS Lett., 285, 165-169.

    Article  CAS  PubMed  Google Scholar 

  23. Kramer, E. B., and Farabaugh, P. J. (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition, RNA, 13, 87-96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaher, H. S., and Green, R. (2009) Fidelity at the molecular level: lessons from protein synthesis, Cell, 136, 746-762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kramer, E. B., Vallabhaneni, H., Mayer, L. M., and Farabaugh, P. J. (2010) A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae, RNA, 16, 1797-1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ribas de Pouplana, L., Santos, M. A., Zhu, J. H., Farabaugh, P. J., and Javid, B. (2014) Protein mistranslation: friend or foe?, Trends. Biochem. Sci., 39, 355-362.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, Y., Koonin, E. V., Lipman, D. J., and Przytycka, T. M. (2009) Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage, Nucleic Acids Res., 37, 6799-6810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savir, Y., and Tlusty, T. (2013) The ribosome as an optimal decoder: a lesson in molecular recognition, Cell, 153, 471-479.

    Article  CAS  PubMed  Google Scholar 

  29. Dana, A., and Tuller, T. (2014) The effect of tRNA levels on decoding times of mRNA codons, Nucleic Acids Res., 42, 9171-9181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonekamp, F., Andersen, H. D., Christensen, T., and Jensen, K. F. (1985) Codon-defined ribosomal pausing in Escherichia coli detected by using the pyrE attenuator to probe the coupling between transcription and translation, Nucleic Acids Res., 13, 4113-4123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Curran, J. F., and Yarus, M. (1989) Rates of aminoacyl-tRNA selection at 29 sense codons in vivo, J. Mol. Biol., 209, 65-77.

    Article  CAS  PubMed  Google Scholar 

  32. Bulmer, M. (1987) Coevolution of codon usage and transfer RNA abundance, Nature, 325, 728-730.

    Article  CAS  PubMed  Google Scholar 

  33. Duret, L. (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes, Trends Genet., 16, 287-289.

    Article  CAS  PubMed  Google Scholar 

  34. Li, W. H. (1987) Models of nearly neutral mutation with particular implications for nonrandom usage of synonymous codons, J. Mol. Evol., 24, 337-345.

    Article  CAS  PubMed  Google Scholar 

  35. Shields, D. C. (1990) Switches in species-specific codon preferences: the influence of mutation biases, J. Mol. Evol., 31, 71-80.

    Article  CAS  PubMed  Google Scholar 

  36. Bulmer, M. (1991) The selection-mutation-drift theory of synonymous codon usage, Genetics, 129, 897-907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Presnyak, V., Alhusaini, N., Chen, Y. H., Martin, S., Morris, N., et al. (2015) Codon optimality is a major determinant of mRNA stability, Cell, 160, 1111-1124, https://doi.org/10.1016/j.cell.2015.02.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boël, G., Letso, R., Neely, H., Price, W. N., Wong, K. H., et al. (2016) Codon influence on protein expression in E. coli correlates with mRNA levels, Nature, 529, 358-363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mishima, Y., and Tomari, Y. (2016) Codon usage and 3′-UTR length determine maternal mRNA stability in zebrafish, Mol. Cell, 61, 874-885.

    Article  CAS  PubMed  Google Scholar 

  40. Bazzini, A. A., Del Viso, F., Moreno-Mateos, M. A., Johnstone, T. G., Vejnar, C. E., et al. (2016) Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition, EMBO J., 35, 2087-2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Radhakrishnan, A., Chen, Y. H., Martin, S., Alhusaini, N., Green, R., and Coller, J. (2016) The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality, Cell, 167, 122-132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hia, F., Yang, S. F., Shichino, Y., Yoshinaga, M., Murakawa, Y., et al. (2019) Codon bias confers stability to human mRNAs, EMBO Rep., 20, e48220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, Q., Medina, S. G., Kushawah, G., DeVore, M. L., Castellano, L. A., et al. (2019) Translation affects mRNA stability in a codon-dependent manner in human cells, Elife, 8, e45396.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Medina-Muñoz, S. G., Kushawah, G., Castellano, L. A., Diez, M., DeVore, M. L., et al. (2021) Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability, Genome Biol., 22, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains, Science, 181, 223-230.

    Article  CAS  PubMed  Google Scholar 

  46. Jaenicke, R. (1991) Protein folding: local structures, domains, subunits, and assemblies, Biochemistry, 30, 3147-3161.

    Article  CAS  PubMed  Google Scholar 

  47. Fersht, A. R. (2008) From the first protein structures to our current knowledge of protein folding: delights and skepticisms, Nat. Rev. Mol. Cell Biol., 9, 650-654.

    Article  CAS  PubMed  Google Scholar 

  48. Bartlett, A. I., and Radford, S. E. (2009) An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms, Nat. Struct. Mol. Biol., 16, 582-588.

    Article  CAS  PubMed  Google Scholar 

  49. Finkelstein, A. V. (2018) 50+ years of protein folding, Biochemistry (Moscow), 83 (Suppl. 1), S3-S18.

    Article  Google Scholar 

  50. Abaskharon, R. M., and Gai, F. (2016) Meandering down the energy landscape of protein folding: are we there yet?, Biophys. J., 110, 1924-1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferina, J., and Daggett, V. (2019) Visualizing protein folding and unfolding, J. Mol. Biol., 431, 1540-1564.

    Article  CAS  PubMed  Google Scholar 

  52. Cowie, D. B., Spiegelman, S., Roberts, R. B., and Duerksen, J. D. (1961) Ribosome-bound β-galactosidase, Proc. Natl. Acad. Sci. USA, 47, 114-122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zipser, D., and Perrin, D. (1963) Complementation on ribosomes, Cold Spring Harb. Symp. Quant. Biol., 28, 533-537.

    Article  CAS  Google Scholar 

  54. Kiho, Y., and Rich, A. (1964) Induced enzyme formed on bacterial polyribosomes, Proc. Natl. Acad. Sci. USA, 51, 111-118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamlin, J., and Zabin, I. (1972) β-Galactosidase: immunological activity of ribosome-bound, growing polypeptide chains, Proc. Natl. Acad. Sci. USA, 69, 412-416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bergman, L. W., and Kuehl, W. M. (1979) Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides, J. Biol. Chem., 254, 5690-5694.

    Article  CAS  PubMed  Google Scholar 

  57. Bergman, L. W., and Kuehl, W. M. (1979) Formation of an intrachain disulfide bond on nascent immunoglobulin light chains, J. Biol. Chem., 254, 8869-8876.

    Article  CAS  PubMed  Google Scholar 

  58. Bergman, L. W., and Kuehl, W. M. (1979) Co-translational modification of nascent immunoglobulin heavy and light chains, J. Supramol. Struct., 11, 9-24.

    Article  CAS  PubMed  Google Scholar 

  59. Lim, V. I., and Spirin, A. S. (1985) Stereochemistry of the transpeptidation reaction in the ribosome. The ribosome generates an alpha-helix in the synthesis of the protein polypeptide chain, Dokl. Akad. Nauk SSSR, 280, 235-239.

    CAS  PubMed  Google Scholar 

  60. Lim, V. I., and Spirin, A. S. (1986) Stereochemical analysis of ribosomal transpeptidation. Conformation of nascent peptide, J. Mol. Biol., 188, 565-574.

    Article  CAS  PubMed  Google Scholar 

  61. Komar, A. A. (2019) Synonymous codon usage – a guide for co-translational protein folding in the cell, Mol. Biol. (Mosk), 53, 883-898.

    Article  CAS  Google Scholar 

  62. Noé, F., De Fabritiis, G., and Clementi, C. (2020) Machine learning for protein folding and dynamics, Curr. Opin. Struct. Biol., 60, 77-84.

    Article  PubMed  CAS  Google Scholar 

  63. Gao, W., Mahajan, S. P., Sulam, J., and Gray, J. J. (2020) Deep learning in protein structural modeling and design, Patterns (NY), 1, 100142.

    Article  Google Scholar 

  64. Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., et al. (2020) Improved protein structure prediction using potentials from deep learning, Nature, 577, 706-710.

    Article  CAS  PubMed  Google Scholar 

  65. Lindberg, M. O., and Oliveberg, M. (2007) Malleability of protein folding pathways: a simple reason for complex behaviour, Curr. Opin. Struct. Biol., 17, 21-29.

    Article  CAS  PubMed  Google Scholar 

  66. Englander, S. W., and Mayne, L. (2014) The nature of protein folding pathways, Proc. Natl. Acad. Sci. USA, 111, 15873-15880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Englander, S. W., Mayne, L., Kan, Z. Y., and Hu, W. (2016) Protein folding-how and why: by hydrogen exchange, fragment separation, and mass spectrometry, Annu. Rev. Biophys., 45, 135-152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Levinthal, C. (1969). How to fold graciously, in Mossbauer Spectroscopy in Biological Systems, Proceedings of a Meeting held at Allerton House, Monticello, Illinois (Debrunner, P., Tsibris, J. C. M., and Münck, E., eds.) University of Illinois Press, Urbana, p. 22.

  69. Gopan, G., Gruebele, M., and Rickard, M. (2020) In-cell protein landscapes: making the match between theory, simulation and experiment, Curr. Opin. Struct. Biol., 66, 163-169.

    Article  PubMed  CAS  Google Scholar 

  70. Gershenson, A., Gosavi, S., Faccioli, P., and Wintrode, P. L. (2020) Successes and challenges in simulating the folding of large proteins, J. Biol. Chem., 295, 15-33.

    Article  CAS  PubMed  Google Scholar 

  71. Chow, M. K., Amin, A. A., Fulton, K. F., Fernando, T., Kamau, L., et al. (2006) The REFOLD database: a tool for the optimization of protein expression and refolding, Nucleic Acids Res., 34 (Database issue), D207-212.

    Article  CAS  Google Scholar 

  72. Mizutani, H., Sugawara, H., Buckle, A. M., Sangawa, T., Miyazono, K. I., et al. (2017) REFOLDdb: a new and sustainable gateway to experimental protocols for protein refolding, BMC Struct. Biol., 17, 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hartl, F. U., and Hayer-Hartl, M. (2009) Converging concepts of protein folding in vitro and in vivo, Nat. Struct. Mol. Biol., 16, 574-581.

    Article  CAS  PubMed  Google Scholar 

  74. Hingorani, K. S., and Gierasch, L. M. (2014) Comparing protein folding in vitro and in vivo: foldability meets the fitness challenge, Curr. Opin. Struct. Biol., 24, 81-90.

    Article  CAS  PubMed  Google Scholar 

  75. Balchin, D., Hayer-Hartl, M., and Hartl, F. U. (2016) In vivo aspects of protein folding and quality control, Science, 353, aac4354.

    Article  PubMed  CAS  Google Scholar 

  76. Gruebele, M., Dave, K., and Sukenik, S. (2016) Globular protein folding in vitro and in vivo, Annu. Rev. Biophys., 45, 233-251.

    Article  CAS  PubMed  Google Scholar 

  77. Dahiya, V., and Buchner, J. (2019) Functional principles and regulation of molecular chaperones, Adv. Protein. Chem. Struct. Biol., 114, 1-60.

    Article  CAS  PubMed  Google Scholar 

  78. Jayaraj, G. G., Hipp, M. S., and Hartl, F. U. (2019) Functional modules of the proteostasis network, Cold Spring Harb. Perspect. Biol., 12, a033951.

    Article  CAS  Google Scholar 

  79. Komar, A. A. (2009) A pause for thought along the co-translational folding pathway, Trends Biochem. Sci., 34, 16-24.

    Article  CAS  PubMed  Google Scholar 

  80. Gloge, F., Becker, A. H., Kramer, G., and Bukau, B. (2014) Co-translational mechanisms of protein maturation, Curr. Opin. Struct. Biol., 24, 24-33.

    Article  CAS  PubMed  Google Scholar 

  81. Thommen, M., Holtkamp, W., and Rodnina, M. V. (2017) Co-translational protein folding: progress and methods, Curr. Opin. Struct. Biol., 42, 83-89.

    Article  CAS  PubMed  Google Scholar 

  82. Komar, A. A. (2018) Unraveling co-translational protein folding: concepts and methods, Methods, 137, 71-81.

    Article  CAS  PubMed  Google Scholar 

  83. Williams, N. K., and Dichtl, B. (2018) Co-translational control of protein complex formation: a fundamental pathway of cellular organization?, Biochem. Soc. Trans., 46, 197-206.

    Article  CAS  PubMed  Google Scholar 

  84. Waudby, C. A., Dobson, C. M., and Christodoulou, J. (2019) Nature and regulation of protein folding on the ribosome, Trends Biochem. Sci., 44, 914-926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jha, S., and Komar, A. A. (2011) Birth, life and death of nascent polypeptide chains, Biotechnol. J., 6, 623-640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Das, D., Das, A., Samanta, D., Ghosh, J., Dasgupta, S., et al. (2008) Role of the ribosome in protein folding, Biotechnol. J., 3, 999-1009.

    Article  CAS  PubMed  Google Scholar 

  87. Voisset, C., Saupe, S. J., and Blondel, M. (2011) The various facets of the protein-folding activity of the ribosome, Biotechnol. J., 6, 668-673.

    Article  CAS  PubMed  Google Scholar 

  88. Banerjee, D., and Sanyal, S. (2014) Protein folding activity of the ribosome (PFAR) – a target for antiprion compounds, Viruses, 6, 3907-3924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Woolhead, C. A., McCormick, P. J., and Johnson, A. E. (2004) Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins, Cell, 116, 725-736.

    Article  CAS  PubMed  Google Scholar 

  90. Lu, J., and Deutsch, C. (2005) Folding zones inside the ribosomal exit tunnel, Nat. Struct. Mol. Biol., 12, 1123-1129.

    Article  CAS  PubMed  Google Scholar 

  91. Wilson, D. N., and Beckmann, R. (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling, Curr. Opin. Struct. Biol., 21, 274-282.

    Article  CAS  PubMed  Google Scholar 

  92. Tu, L., and Deutsch, C. (2017) Determinants of helix formation for a Kv1.3 transmembrane segment inside the ribosome exit tunnel, J. Mol. Biol., 429, 1722-1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gilbert, R. J., Fucini, P., Connell, S., Fuller, S. D., Nierhaus, K. H., et al. (2004) Three-dimensional structures of translating ribosomes by Cryo-EM, Mol. Cell, 14, 57-66.

    Article  CAS  PubMed  Google Scholar 

  94. Kosolapov, A., and Deutsch, C. (2009) Tertiary interactions within the ribosomal exit tunnel, Nat. Struct. Mol. Biol., 16, 405-411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tu, L., Khanna, P., and Deutsch, C. (2014) Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome, J. Mol. Biol., 426, 185-198.

    Article  CAS  PubMed  Google Scholar 

  96. Holtkamp, W., Kokic, G., Jäger, M., Mittelstaet, J., Komar, A. A., and Rodnina, M. V. (2015) Cotranslational protein folding on the ribosome monitored in real time, Science, 350, 1104-1107.

    Article  CAS  PubMed  Google Scholar 

  97. Chen, X., Rajasekaran, N., Liu, K., and Kaiser, C. M. (2020) Synthesis runs counter to directional folding of a nascent protein domain, Nat. Commun., 11, 5096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Komar, A. A. (2018) The Yin and Yang of codon usage, Hum. Mol. Genet., 25(R2), R77-R85.

    Google Scholar 

  99. Komar, A. A. (2007) SNPs, silent but not invisible, Science, 315, 466-467.

    Article  CAS  PubMed  Google Scholar 

  100. Tsai, C. J., Sauna, Z. E., Kimchi-Sarfaty, C., Ambudkar, S. V., Gottesman, M. M., and Nussinov, R. (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima, J. Mol. Biol., 383, 281-291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, G., and Ignatova, Z. (2011) Folding at the birth of the nascent chain: coordinating translation with co-translational folding, Curr. Opin. Struct. Biol., 21, 25-31.

    Article  PubMed  CAS  Google Scholar 

  102. O’Brien, E. P., Ciryam, P., Vendruscolo, M., and Dobson, C. M. (2014) Understanding the influence of codon translation rates on cotranslational protein folding, Acc. Chem. Res., 47, 1536-1544.

    Article  PubMed  CAS  Google Scholar 

  103. Chaney, J. L., and Clark, P. L. (2015) Roles for synonymous codon usage in protein biogenesis, Annu. Rev. Biophys., 44, 143-166.

    Article  CAS  PubMed  Google Scholar 

  104. Jacobson, G. N., and Clark, P. L. (2016) Quality over quantity: optimizing co-translational protein folding with non-“optimal” synonymous codons, Curr. Opin. Struct. Biol., 38, 102-110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sharma, A. K., and O’Brien, E. P. (2018) Non-equilibrium coupling of protein structure and function to translation-elongation kinetics, Curr. Opin. Struct. Biol., 49, 94-103.

    Article  CAS  PubMed  Google Scholar 

  106. Samatova, E., Daberger, J., Liutkute, M., and Rodnina, M. V. (2021) Translational control by ribosome pausing in bacteria: how a non-uniform pace of translation affects protein production and folding, Front. Microbiol., 11, 619430.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu, Y., Yang, Q., and Zhao, F. (2021) Synonymous but not silent: the codon usage code for gene expression and protein folding, Annu. Rev. Biochem., 90, 375-401, https://doi.org/10.1146/annurev-biochem-071320-112701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pelham, H. R., and Jackson, R. J. (1976) An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem., 67, 247-256.

    Article  CAS  PubMed  Google Scholar 

  109. Kolb, V. A., Makeyev, E. V., and Spirin, A. S. (1994) Folding of firefly luciferase during translation in a cell-free system, EMBO J., 13, 3631-3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Komar, A. A., Kommer, A., Krasheninnikov, I. A., and Spirin, A. S. (1993) Cotranslational heme binding to nascent globin chains, FEBS Lett., 326, 261-263.

    Article  CAS  PubMed  Google Scholar 

  111. Komar, A. A., Kommer, A., Krasheninnikov, I. A., and Spirin, A. S. (1997) Cotranslational folding of globin, J. Biol. Chem., 272, 10646-10651.

    Article  CAS  PubMed  Google Scholar 

  112. Purvis, I. J., Bettany, A. J., Santiago, T. C., Coggins, J. R., Duncan, K., et al. (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis, J. Mol. Biol., 193, 413-417.

    Article  CAS  PubMed  Google Scholar 

  113. Krasheninnikov, I. A., Komar, A. A., and Adzhubeĭ, I. A. (1988) Role of the rare codon clusters in defining the boundaries of polypeptide chain regions with identical secondary structures in the process of co-translational folding of proteins [in Russian], Dokl. Akad. Nauk SSSR, 303, 995-999.

    CAS  PubMed  Google Scholar 

  114. Krasheninnikov, I. A., Komar, A. A., and Adzhubeĭ, I. A. (1989) Frequency of using codons in mRNA and coding of the domain structure of proteins [in Russian], Dokl. Akad. Nauk. SSSR, 305, 1006-1012.

    CAS  PubMed  Google Scholar 

  115. Krasheninnikov, I. A., Komar, A. A., and Adzhubeĭ, I. A. (1989) Role of the code redundancy determining cotranslational protein folding, Biokhimiia, 5, 187-200.

    Google Scholar 

  116. Heinemann, U., and Hahn, M. (1995) Circular permutation of polypeptide chains: implications for protein folding and stability, Prog. Biophys. Mol. Biol., 64, 121-143.

    Article  CAS  PubMed  Google Scholar 

  117. Protzel, A., and Morris, A. J. (1974) Gel chromatographic analysis of nascent globin chains. Evidence of nonuniform size distribution, J. Biol. Chem., 249, 4594-4600.

    Article  CAS  PubMed  Google Scholar 

  118. Chaney, W. G., and Morris, A. J. (1978) Nonuniform size distribution of nascent peptides: the role of messenger RNA, Arch. Biochem. Biophys., 191, 734-741.

    Article  CAS  PubMed  Google Scholar 

  119. Lizardi, P. M., Mahdavi, V., Shields, D., and Candelas, G. (1979) Discontinuous translation of silk fibroin in a reticulocyte cell-free system and in intact silk gland cells, Proc. Natl. Acad. Sci. USA, 76, 6211-6215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Randall, L. L., Josefsson, L. G., and Hardy, S. J. (1980) Novel intermediates in the synthesis of maltose-binding protein in Escherichia coli, Eur. J. Biochem., 107, 375-379.

    Article  CAS  PubMed  Google Scholar 

  121. Abraham, A. K., and Pihl, A. (1980) Variable rate of polypeptide chain elongation in vitro. Effect of spermidine, Eur. J. Biochem., 106, 257-262.

    Article  CAS  PubMed  Google Scholar 

  122. Varenne, S., Knibiehler, M., Cavard, D., Morlon, J., and Lazdunski, C. (1982) Variable rate of polypeptide chain elongation for colicins A, E2 and E3, J. Mol. Biol., 159, 57-70.

    Article  CAS  PubMed  Google Scholar 

  123. Candelas, G., Candelas, T., Ortiz, A., and Rodríguez, O. (1983) Translational pauses during a spider fibroin synthesis, Biochem. Biophys. Res. Commun., 116, 1033-1038.

    Article  CAS  PubMed  Google Scholar 

  124. Varenne, S., Buc, J., Lloubes, R., and Lazdunski, C. (1984) Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains, J. Mol. Biol., 180, 549-576.

    Article  CAS  PubMed  Google Scholar 

  125. Wolin, S. L., and Walter, P. (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA, EMBO J., 7, 3559-3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Krasheninnikov, I. A., Komar, A. A., and Adzhubeĭ, I. A. (1991) Nonuniform size distribution of nascent globin peptides, evidence for pause localization sites, and a cotranslational protein-folding model, J. Protein. Chem., 10, 445-454.

    Article  CAS  PubMed  Google Scholar 

  127. Thanaraj, T. A., and Argos, P. (1996) Ribosome-mediated translational pause and protein domain organization, Protein Sci., 5, 1594-1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thanaraj, T. A., and Argos, P. (1996) Protein secondary structural types are differentially coded on messenger RNA, Protein Sci., 5, 1973-1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Adzhubei, A. A., Adzhubei, I. A., Krasheninnikov, I. A., and Neidle, S. (1996) Non-random usage of “degenerate” codons is related to protein three-dimensional structure, FEBS Lett., 399, 78-82.

    Article  CAS  PubMed  Google Scholar 

  130. Oresic, M., and Shalloway, D. (1998) Specific correlations between relative synonymous codon usage and protein secondary structure, J. Mol. Biol., 281, 31-48.

    Article  CAS  PubMed  Google Scholar 

  131. Widmann, M., Clairo, M., Dippon, J., and Pleiss, J. (2008) Analysis of the distribution of functionally relevant rare codons, BMC Genomics, 9, 207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Clarke, T. F. 4th, and Clark, P. L. (2008) Rare codons cluster, PLoS One, 3, e3412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Chartier, M., Gaudreault, F., and Najmanovich, R. (2012) Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events, Bioinformatics, 28, 1438-1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ma, X. X., Wang, Y. N., Cao, X. A., Li, X. R., Liu, Y. S., et al. (2018) The effects of codon usage on the formation of secondary structures of nucleocapsid protein of peste des petits ruminants virus, Genes Genomics, 40, 905-912.

    Article  CAS  PubMed  Google Scholar 

  135. Newaz, K., Wright, G., Piland, J., Li, J., Clark, P. L., et al. (2020) Network analysis of synonymous codon usage, Bioinformatics, 36, 4876-4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. McKown, R. L., Raab, R. W., Kachelries, P., Caldwell, S., and Laurie, G. W. (2013) Conserved regional 3′ grouping of rare codons in the coding sequence of ocular prosecretory mitogen lacritin, Invest. Ophthalmol. Vis. Sci., 54, 1979-1987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Nissley, D. A., Carbery, A., Chonofsky, M., and Deane, C. M. (2021) Ribosome occupancy profiles are conserved between structurally and evolutionarily related yeast domains, Bioinformatics, https://doi.org/10.1093/bioinformatics/btab020.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Komar, A. A., and Jaenicke, R. (1995) Kinetics of translation of gamma B crystallin and its circularly permutated variant in an in vitro cell-free system: possible relations to codon distribution and protein folding, FEBS Lett., 376, 195-198.

    Article  CAS  PubMed  Google Scholar 

  139. Rudolph, R., Siebendritt, R., Nesslaŭer, G., Sharma, A. K., and Jaenicke, R. (1990) Folding of an all-beta protein: independent domain folding in gamma II-crystallin from calf eye lens, Proc. Natl. Acad. Sci. USA, 87, 4625-4629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Komar, A. A., Lesnik, T., and Reiss, C. (1999) Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation, FEBS Lett., 462, 387-391.

    Article  CAS  PubMed  Google Scholar 

  141. Kimchi-Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., et al. (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity, Science, 315, 525-528.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, G., Hubalewska, M., and Ignatova, Z. (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding, Nat. Struct. Mol. Biol., 16, 274-280.

    Article  CAS  PubMed  Google Scholar 

  143. Zhou, M., Guo, J., Cha, J., Chae, M., Chen, S., et al. (2013) Non-optimal codon usage affects expression, structure and function of clock protein FRQ, Nature, 495, 111-115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sander, I. M., Chaney, J. L., and Clark, P. L. (2014) Expanding Anfinsen’s principle: contributions of synonymous codon selection to rational protein design, J. Am. Chem. Soc., 136, 858-861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hu, S., Wang, M., Cai, G., and He, M. (2013) Genetic code-guided protein synthesis and folding in Escherichia coli, J. Biol. Chem., 288, 30855-30861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, S. J., Yoon, J. S., Shishido, H., Yang, Z., Rooney, L. A., et al. (2015) Protein folding. Translational tuning optimizes nascent protein folding in cells, Science, 348, 444-448.

    Article  CAS  PubMed  Google Scholar 

  147. Yu, C. H., Dang, Y., Zhou, Z., Wu, C., Zhao, F., et al. (2015) Codon usage influences the local rate of translation elongation to regulate co-translational protein folding, Mol. Cell, 59, 744-754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Walsh, I. M., Bowman, M. A., Soto Santarriaga, I. F., Rodriguez, A., and Clark, P. L. (2020) Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness, Proc. Natl. Acad. Sci. USA, 117, 3528-3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Komar, A. A. (2007) Silent SNPs: impact on gene function and phenotype, Pharmacogenomics, 8, 1075-1080.

    Article  CAS  PubMed  Google Scholar 

  150. Sauna, Z. E., and Kimchi-Sarfaty, C. (2011) Understanding the contribution of synonymous mutations to human disease, Nat. Rev. Genet., 12, 683-691.

    Article  CAS  PubMed  Google Scholar 

  151. Hunt, R. C., Simhadri, V. L., Iandoli, M., Sauna, Z. E., and Kimchi-Sarfaty, C. (2014) Exposing synonymous mutations, Trends Genet., 30, 308-321.

    Article  CAS  PubMed  Google Scholar 

  152. Simhadri, V. L., Hamasaki-Katagiri, N., Lin, B. C., Hunt, R., Jha, S., et al. (2017) Single synonymous mutation in factor IX alters protein properties and underlies haemophilia B, J. Med. Genet., 54, 338-345.

    Article  CAS  PubMed  Google Scholar 

  153. Pechmann, S., Chartron, J. W., and Frydman, J. (2014) Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo, Nat. Struct. Mol. Biol., 21, 1100-1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Buhr, F., Jha, S., Thommen, M., Mittelstaet, J., Kutz, F., et al. (2016) Synonymous codons direct cotranslational folding toward different protein conformations, Mol. Cell, 61, 341-351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kimchi-Sarfaty, C., Schiller, T., Hamasaki-Katagiri, N., Khan, M. A., Yanover, C., and Sauna, Z. E. (2013) Building better drugs: developing and regulating engineered therapeutic proteins, Trends Pharmacol. Sci., 34, 534-548.

    Article  CAS  PubMed  Google Scholar 

  156. Komar, A. A. (2016) The art of gene redesign and recombinant protein production: approaches and perspectives, Top. Med. Chem., 2, 1-17.

    Google Scholar 

  157. Alexaki, A., Hettiarachchi, G. K., Athey, J. C., Katneni, U. K., Simhadri, V., et al. (2019) Effects of codon optimization on coagulation factor IX translation and structure: implications for protein and gene therapies, Sci. Rep., 9, 15449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Hunt, R., Hettiarachchi, G., Katneni, U., Hernandez, N., Holcomb, D., et al. (2019) A single synonymous variant (c.354G>A [p.P118P]) in ADAMTS13 confers enhanced specific activity, Int. J. Mol. Sci., 20, 5734.

    Article  CAS  PubMed Central  Google Scholar 

  159. Knobe, K. E., Sjorin, E., and Ljung, R. C. (2008) Why does the mutation G17736A/Val107Val (silent) in the F9 gene cause mild haemophilia B in five Swedish families?, Haemophilia, 14, 723-728.

    Article  CAS  PubMed  Google Scholar 

  160. Gartner, J. J., Parker, S. C., Prickett, T. D., Dutton-Regester, K., Stitzel, M. L., et al. (2013) Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma, Proc. Natl. Acad. Sci. USA, 110, 13481-13486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hamasaki-Katagiri, N., Salari, R., Wu, A., Qi, Y., Schiller, T., et al. (2013) A gene-specific method for predicting hemophilia-causing point mutations, J. Mol. Biol., 425, 4023-4033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hamasaki-Katagiri, N., Lin, B. C., Simon, J., Hunt, R. C., Schiller, T., et al. (2017) The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia, Haemophilia, 23, e8-e17.

    Article  CAS  PubMed  Google Scholar 

  163. Katneni, U. K., Liss, A., Holcomb, D., Katagiri, N. H., Hunt, R., et al. (2019) Splicing dysregulation contributes to the pathogenicity of several F9 exonic point variants, Mol. Genet. Genomic Med., 7, e840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Edwards, N. C., Hing, Z. A., Perry, A., Blaisdell, A., Kopelman, D. B., F et al. (2012) Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches, PLoS One, 7, e38864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sauna, Z. E., Richards, S. M., Maillere, B., Jury, E. C., and Rosenberg, A. S. (2020) Editorial: immunogenicity of proteins used as therapeutics, Front. Immunol., 11, 614856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work would not be possible without the original contribution of Ivan Adzhubei and Igor A. Krasheninnikov, further support from Slava Kolb, Aigar Kommer, Valentin M. Stepanov, Lev P. Ovchinnikov, and Alexander S. Spirin, followed by collaborations with Rainer Jaenicke, Claude Reiss and more recently with Chava Kimchi-Sarfaty, Harald Schwalbe and Marina V. Rodnina.

I am indebted to all my teachers, colleagues, and collaborators for their extremely generous and inspiring discussions and invaluable contributions. I also apologize to those whose work or original publications could not be cited in this short review article.

Funding

In recent years, the work in my laboratory was financially supported by the Human Frontier Science Program Organization [HFSP grant #RGP0024/2010], the American Heart Association [AHA grant 13GRNT17070025], the National Institutes of Health [NIH grants HL121779; HL151392 and GM128981], the Center for Gene Regulation in Health and Disease (GRHD) at CSU, and the biotechnology company, DAPCEL, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Komar.

Ethics declarations

I am co-founder and Chief Scientific Officer of DAPCEL, Inc., a biotechnology company that develops innovative approaches for gene redesign for protein production in any desired host organism. This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komar, A.A. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. Biochemistry Moscow 86, 976–991 (2021). https://doi.org/10.1134/S0006297921080083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921080083

Keywords

Navigation