
The one hundred year anniversary of the birth of Ilia

Borisovich Zbarsky (1913�2007), one of pioneer

researchers in the field of nuclear organization, was cele�

brated in 2013. Sixty�five years ago, in 1949, an article

“On the proteins of the cell nuclei” by him and his coau�

thor, Prof. Debov, was published [1]. This work initiated a

new concept of the nucleus and its architecture. Indeed,

for many years biochemists and then molecular biologists

considered the cell nucleus as a reactor (tube) inside

which different biochemical processes providing genome

functioning take place. It was generally accepted that dif�

ferent enzymes, including DNA� and RNA�polymerases,

exist in soluble form, and, after binding to DNA, move

along it to synthesize DNA or RNA. However, now the

picture of the organization of functional processes in the

cell nucleus seems rather more complex. It has been

shown that quite complex structure and functional com�

partmentalization are characteristic for the eukaryotic

nucleus [2�5]. According to their function, replication and

transcription factories that contain working DNA� and

RNA�polymerases are the most important compartments

[6�8]. A particular case of the transcriptional factory is

represented by a nucleolus, where RNA�polymerase I

conducts the synthesis of ribosomal RNAs. Current views

regarding functional compartmentalization of the cell

nucleus were formed gradually with accumulation of cor�

responding information. Development of adequate new

methods of research, such as various methods of immuno�

fluorescence staining, confocal microscopy, and other

microscopic methods, have played a significant role. The

importance of the spatial organization of the genome and

different processes of synthesis carried out with the partic�

ipation of the genome in great degree promoted conver�

gence of molecular and cell biology, and now these fields

of research represent a practically unified research field.

Works on study of so�called nuclear matrix that were start�

ed in the middle of the last century in the world and also

in our country in Zbarsky’s laboratory have played an

important role in this process. We will consider in this

review the results of nuclear matrix studies and consider

the current state of knowledge in the field of the structur�

al basis of nucleus compartmentalization in the cell.

ISSN 0006�2979, Biochemistry (Moscow), 2014, Vol. 79, No. 7, pp. 608�618. © Pleiades Publishing, Ltd., 2014.

Original Russian Text © S. V. Razin, V. V. Borunova, O. V. Iarovaia, Y. S. Vassetzky, 2014, published in Biokhimiya, 2014, Vol. 79, No. 7, pp. 770�781.

REVIEW

608

* To whom correspondence should be addressed.

Nuclear Matrix and Structural and Functional
Compartmentalization of the Eucaryotic Cell Nucleus

S. V. Razin1,2,3*, V. V. Borunova3, O. V. Iarovaia1,2, and Y. S. Vassetzky2,4

1Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5,

119334 Moscow, Russia; fax: +7 (499) 135�9787; E�mail: sergey.v.razin@usa.net
2LIA 1066 French�Russian Joint Cancer Research Laboratory,

94805 Villejuif, France – ul. Vavilova 34/5, 119334 Moscow, Russia
3Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow,

Russia; fax: +7 (495) 939�2690; E�mail: vborunova@mail.ru
4UMR8126, Université Paris�Sud, CNRS, Institut de Cancérologie Gustave Roussy, Villejuif, France; fax: 33�1�42�11�54�94

Received March 19, 2014

Revision received April 4, 2014

Abstract—Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a

nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results

obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous stud�

ies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a fila�

mentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is per�

formed by the folded genome itself.
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Initial works studying internal organization of the cell
nucleus and discovery of nuclear matrix. It was shown in

the middle of the last century by some researchers that the

cell nucleus contains a network of filaments composed of

RNA and proteins [9, 10]. Other authors showed that the

nucleus retains its shape and certain morphological fea�

tures even after extraction of most of the chromatin [11,

12]. These observations suggest that there is a structure

inside the eukaryotic cell nucleus that supports the inter�

nal organization of the nucleus (possibly a network of fil�

aments). This idea was finally formulated by Berezney

and Coffey in 1974, who suggested naming this structure

the nuclear matrix [13]. They suggested that the nuclear

matrix has predominantly protein nature, because it is not

degraded by treatment with DNases and RNases.

Electron microscopic images presented in the above�

cited work showed the presence of a nuclear lamina,

residual nucleoli, and filamentous network in the nuclear

matrix. This filamentous network was named internal or

diffuse matrix [13]. Results obtained by Berezney and

Coffey differed slightly from the results that have been

obtained 10 years before in Zbarsky’s laboratory, and,

most likely, would stay unnoticed if the same authors did

not demonstrate that newly synthesized DNA is preferen�

tially attached to the nuclear matrix [14]. This observa�

tion lead to a long history of study of the nuclear matrix,

which then was considered as a platform for assembly of

various multienzyme complexes [8, 15�19]. After reveal�

ing different functional compartments inside the nucleus,

the nuclear matrix came to be considered as a structural

basis for compartmentalization [20, 21]. Indeed, practi�

cally all characterized nuclear compartments were

revealed in preparations of isolated nuclear matrix after

removal of the bulk of chromatin [20, 22�24]. It was

demonstrated practically simultaneously with discovery

of the nuclear matrix that after solubilization of histones,

total nuclear DNA remained bound to residual proteina�

ceous structures (nuclear matrix), being organized into

topologically closed loops with average size of 50�250 kb

[25�27]. These findings suggested that the nuclear matrix

plays an important role in folding of interphase chromo�

somes. Similar DNA loops were also revealed in

metaphase chromosomes after extraction of histones [28].

This suggested that the organization of DNA into loops

attached to chromosomal skeleton elements was pre�

served in the course of the full cell cycle [29]. It was also

suggested that DNA loops attached to the nuclear matrix

may represent some structural and functional units

(domains) of the genome [30]. Taken in combination,

these observations lead to the study of the nuclear matrix

as it is (protein composition and ultrastructure) and

specificity of DNA attachment to the nuclear matrix.

These issues will be considered here in detail in the next

sections.

Structure and protein composition of nuclear matrix.
Berezney and Coffi declared in their initial publications

that three proteins with molecular mass of approximately

70 kDa, which were identified as nuclear lamina proteins,

were the main components of the nuclear matrix [13, 15].

Afterwards, it has been demonstrated that the protein

composition of the nuclear matrix is more complex [31�

33]. These contradictions were seemingly due to an insta�

bility of the internal (diffuse) nuclear matrix. During iso�

lation of the nuclear matrix from various cells in accor�

dance with the original protocol of Berezney and Coffey,

this part of the nuclear matrix was completely or partly

lost [34]. Incubation of nuclei in the presence of Cu2+

[34, 35] and other bivalent cations [36] and treatment

with agents that promote formation of disulfide bonds

(for example, by sodium tetrathionate) [34] stabilized the

diffuse matrix. A similar result was obtained after incuba�

tion of nuclei at 37°C [37, 38]. In great degree, the diffuse

matrix is composed of proteins of ribonucleoprotein

(RNP) particles [39, 40]. Matrins [41, 42], actin [43, 44],

NuMA [45�47], and DNA�topoisomerase II [48�52] rep�

resent other typical components of the diffuse matrix. In

contrast to lamins, all the listed proteins are not exclusive

components of the nuclear matrix. They are also present

in extracted fractions. For many years the following ques�

tion was debated – is the diffuse nuclear matrix constant�

ly present in the living cell, or it is formed during chro�

matin solubilization as a result of protein aggregation? To

answer this question, many researchers tried to character�

ize the filaments that constitute the diffuse nuclear

matrix. The network of filaments can be seen in the

nuclear matrix inspected under an electron microscope

[53�55]. However, the nature of these filaments is still

unclear. The most typical components of the isolated

nuclear matrix do not form filamentous structures in the

living cell (this issue is described in detail in a review by

Hancock [56]). In some cases, actin and lamins are in fil�

aments inside the nucleus of living cells, but these fila�

ments do not form a unified network like the cytoskeleton

and the network of filaments that are revealed in isolated

nuclear matrix [57, 58]. Some nuclear matrix proteins,

including proteins of RNP particles and NuMA, readily

form filaments in vitro and in vivo under conditions of

their overexpression in living cells [59�62]. This suggests

that the internal matrix is formed de novo as a result of

aggregation of proteins in the interchromatin compart�

ment that might occur during extraction of nuclei with

high�salt solutions [63]. We will return to discussion of

this issue after a brief review of works that were directed to

the study of the nuclear matrix DNA.

Nuclear matrix DNA. Demonstration of the fact that

genomic DNA in interphase nuclei and metaphase chro�

mosomes is organized in the form of loops attached at

chromosomal skeletal elements (nuclear matrix or chro�

mosomal skeleton) [25, 28, 64] insoluble in high�salt

solutions stimulated studies on the specificity of DNA

organization into loops. Two questions were considered in

these works: (1) Are specific DNA sequences necessary
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for DNA loop anchorage to the nuclear matrix? And (2),

are individual DNA sequences arranged specifically or

randomly in relation to sites of DNA attachment at the

nuclear matrix? Clear answers for these questions have

not been obtained. It was noted in the first studies that

DNA sequences attached at the nuclear matrix are rich in

repetitive elements [29, 65, 66]. However, no definite

class of repetitive DNA sequences typical for DNA

attached to the nuclear matrix was found [67]. Other

authors reported that there was no difference between

nuclear matrix�attached DNA and total DNA [68]. A

critical attitude regarding the procedure of histone

extraction with concentrated saline solution due to possi�

ble stimulation of protein aggregation motivated the

development of new approaches for isolation of the

nuclear skeleton. The best�known procedure is the

extraction of nuclei by a weak ionic detergent – lithium

diiodosalicylate [69]. Using this procedure, preparations

of residual nuclear structures that contained specific

genomic elements that were apparently involved in

attaching DNA loops at the nuclear scaffold were

obtained. These genomic elements were named scaffold

attachment regions (SARs) [69�71]. Other authors have

shown that there are particular classes of DNA sequences

in eukaryotic genomes that in vitro specifically bind to the

nuclear matrix in the presence of an excess of competitor

prokaryotic DNA [72, 73]. These genome elements were

named matrix association regions (MARs). Subsequent

studies showed that there are no differences between

MARs and SARs. Moreover, it was revealed that nuclear

matrix (nuclear scaffold) preparations, isolated using

lithium diiodosalicylate, can be used in vitro in experi�

ments on isolation of MARs [74]. Currently, the term

“S/MAR” is often used instead terms “MAR” or “SAR”

[75]. S/MAR�elements do not share homologous

nucleotide sequences, but they possess some common

characteristics, including relative enrichment in A/T�

pairs and the ability to be preferentially melted in super�

coiled DNA [76, 77]. Properties of S/MAR�elements

have been described in several reviews [67, 75, 78]. So,

here we will not consider the properties of S/MAR�ele�

ments in detail. It should only be noted that they are not

tissue� and species�specific elements [73]. It is also

important that S/MAR�elements were found inside genes

and even inside exons [79]. Despite the conviction of

many researchers that the S/MAR�elements participate

in attachment of DNA to the nuclear skeleton, there is no

direct evidence for this. Moreover, it has been shown that

S/MAR�elements can be removed from the nucleus by

electroelution under physiological ionic strength [80],

which weakly correlates with their postulated role in the

attachment of DNA loops to the nuclear skeleton

(matrix).

Using various methodological approaches, many

proteins that preferentially bind to S/MAR�elements

have been identified [81, 82]. Among them lamins [83],

SATB�1 (special AT�rich sequence binding 1) [84, 85],

and SAFA/hnRNP�U [40, 86] are the best known.

Independently from the possible role of these proteins in

attachment of DNA to the nuclear matrix, they may also

play an important role in the maintenance of the archi�

tecture of interphase chromosomes. SATB�1 is more

studied here, and it has been shown using a chromosome

conformation capture method that it directly participates

in supporting functionally important interactions

between remote elements in the genome [87�90].

Works studying the specificity of chromosomal DNA

organization into loops independently of the presence of

specific genomic DNA at the base of the loops were start�

ed in Cook’s laboratory [91] few years after the discovery

of eukaryotic nucleoids (residual nuclei that contain

DNA loops attached to the nuclear matrix [25, 92]) and

continued in several other laboratories [93�96]. However,

the results of these studies were rather surprising. It was

found that actively transcribing genes localize at the base

of loops or very close to them, while silent genes were

mapped at distal parts of loops. The position of tissue�

specific genes inside loops depended on the type of cell

differentiation and could be altered in relation to their

transcriptional status. For instance, the chicken ovalbu�

min gene becomes attached to the nuclear matrix during

estrogen�stimulated differentiation of ovary cells [94]. In

combination with the previously known fact of attach�

ment of replicating DNA to the nuclear matrix [14, 97],

all the results of the works cited above indicated that

DNA organization as a loop is a dynamic process, and it

directly reflects the functional activity of a genome [21].

However, some observations do not support this model

[21]. In particular, it was shown that there are so�called

permanent sites of DNA attachment to the nuclear

matrix, and it was possible to detect them in inactive

nuclei of chicken erythrocytes [98, 99] and sperm nuclei

[100]. The fact of DNA organization as loops in inactive

sperm nuclei [101�103] distinctly indicates that this

organization exists independently of replication and tran�

scription activity. We suggested that there are permanent

(independent of replication and transcription) as well as

functionally dependent sites of DNA attachment to the

nuclear matrix [104]. To map permanent sites of DNA

attachment to the nuclear matrix, a method of DNA loop

excision by DNA�topoisomerase II of the nuclear matrix

was developed [105�108]. Using this experimental proce�

dure, maps of genomic DNA organization into loops for

some segments of the genome of different organisms were

constructed, including a map of the organization into

loops of a human dystrophin gene [109]. It is most impor�

tant that this map has been verified by hybridization with

nuclear halos of bacmid probes that correspond to the

mapped DNA loops. Thus, it was for the first time

demonstrated that DNA loops mapped with the use of

biochemical methods correspond to loops that can be

observed in cytological preparations [109]. Investigation
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of developmental changes of chromatin loop organization

in Xenopus laevis showed increasing size of loops during

ontogenesis and change in specificity of DNA attachment

to the nuclear matrix [110�112].

Nuclear matrix in the context of cell nucleus com�
partmentalization. Demonstration of the fact that replica�

tion and transcription processes proceed at the nuclear

matrix (skeleton) gave a great impulse to study of spatial

organization of different processes in the cell nucleus,

and this promoted understanding of the importance of

functional compartmentalization in the cell nucleus.

During a relatively short time period, replication [8, 113,

114] and transcription [115�117] factories, splicing

“speckles” [118, 119], and many other functional com�

partments were discovered [2, 120, 121]. It seemed logi�

cal to assume that a platform should exist for assembling

and positioning of functional compartments inside the

nucleus. For many years nuclear matrix was considered as

this platform [20, 24, 122]. Indeed, different researchers

showed that practically all known nuclear compartments

are preserved in isolated nuclear matrix after removal of

most of the chromatin [20, 113, 123, 124]. At the same

time, the nature of nuclear matrix was not yet revealed

[57, 58]. Certain concern of researchers was caused by the

contradiction between results that demonstrate preferen�

tial sensitivity of active genes to exogenous nucleases

[125] and mediation of transcription at the nuclear

matrix. Indeed, DNA sequences that are localized in the

base of loops are less available for the action of nucleases

[91]. This contradiction is readily explained using the

suggestion that diffuse (internal) nuclear matrix is formed

as a result of protein aggregation during chromatin

extraction. In this connection, it is appropriate to

remember that there are chromosomal territories and so�

called interchromatin domain in the nucleus [126�128].

First, it was considered that this domain localizes pre�

dominantly between chromosomal territories [128].

However, it was then demonstrated that a network of

interchromatin channels spans chromosomal territories

[126, 129, 130], making their internal areas available for

different proteins, including exogenous nucleases.

Replication and transcription factories are located at the

surface of interchromatin channels that are used also for

transport of RNA to the cytoplasm [63]. It looks very

probable that, in the course of nuclear matrix isolation,

proteins of RNP particles present inside interchromatin

channels aggregate with formation of a network of fila�

ments, which was named internal or diffuse matrix [60,

63]. Attracting forces that arise under conditions of

macromolecular crowding may promote this process [56].

Taking into account all the above�mentioned data, it is

possible to state that the diffuse nuclear matrix (i.e. an

irregular network of fibrils and granules) is undoubtedly

an artifact structure. At the same time, formation of this

structure during chromatin solubilization preserves the

initial positioning of nuclear compartments in the

absence of chromatin. In this connection, a procedure of

nuclear matrix isolation can be considered as a fixation

method that allows making observations that are impossi�

ble to make using nuclei fixed by other methods. For

example, it is appropriate to note that ovoid structures

representing replication factories were discovered during

studies of nuclear matrix (nuclear skeleton) preparations

by electron microscopy [113].

Folded genome as a platform for functional compart�
mentalization of the cell nucleus. If the nuclear matrix

does not exist as a unified filamentous structure, then

what serves as a platform for functional compartmental�

ization of the nucleus? There is solid basis to suggest that

this platform is provided by genomic DNA itself folded

into chromatin [13�133]. In this connection, most impor�

tant is the fact that the chromatin fibril constituting an

interphase chromosome is organized in the nucleus in a

rather complex manner. It is appropriate to mention the

functional architecture of interphase chromosomes that is

supported by a system of interactions between remote

genomic elements. Existence of such interactions inside

chromosomes as well as between different chromosomes

was shown in a number of works carried out with the use

of a chromosome conformation capture (3C) procedure

[134] and derived full�genome C�methods [135�140].

Territorial organization of interphase chromosomes pro�

vides the existence of an interchromatin domain that

contains many nuclear compartments, including SC35

speckles (splicing “speckles”), PML bodies, and Cajal

bodies [127, 128, 130, 141]. Other compartments, such as

transcription factories (including also a nucleolus) and

replication factories, are formed with direct participation

of DNA. According to one point of view, assembly of dif�

ferent groups of genes into transcription factories is one

of the most important determinants supporting the archi�

tecture of interphase chromosomes [142, 143]. An alter�

native point of view according to which transcription fac�

tories contain genes that for any reason are close to each

other in the cell nucleus space deserves equal attention

[144]. As for replication factories, they may represent

basic structural blocks of a chromosome [145] that are

revealed as topologically associated domains (TADs) by

the Hi�C method [135]. It has been known for a long time

that different types of heterochromatin domains are con�

centrated near the nuclear lamina and in nucleolus adja�

cent layer (chromatin domains known as LADs [146, 147]

and NADs [135, 140, 148]) or combined into so�called

Polycomb�bodies [149�153]. Assembly of inactive chro�

matin domains proceeds with involvement of HP1 and

H3K9 histone methylase or with the participation of

Polycomb proteins. Various structures of higher order in

the chromatin are relatively labile. Structural components

of heterochromatin demonstrate relatively high rates of

exchange [154�156]. In other words, the existing hete�

rochromatin domains represent a product of dynamic

equilibrium between processes of assembly and disassem�
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bly. Spatial association of such domains in a lamina adja�

cent layer or in Polycomb�bodies must shift the equilibri�

um toward assembly due to high local concentration of

heterochromatin proteins and enzymes that catalyze

modification of histones necessary for heterochromatin

formation. Attraction of any genes to such areas, for

example, the lamina adjacent layer, will lead to their inac�

tivation due to high local concentration of factors that

promote inactive chromatin formation [157�160].

For many years, the concept of nuclear matrix

remained attractive despite the quite well�founded criti�

cism because it suggested an explanation of what the

structural basis for the functional compartmentalization

of a cell nucleus is [161]. Realization of the fact that the

interphase chromosome organized in space due to inter�

action between remote genomic elements stabilized by

architectural proteins [162�165] is itself a platform for the

cell nucleus compartmentalization makes the concept of

the nuclear matrix completely unnecessary.

The concept of nuclear matrix as a skeletal basis of

the cell nucleus has now been fully exhausted. Numerous

studies attempting to characterize the nature of the

nuclear matrix failed to provide evidence for the existence

of such a structure. According to a logical point of view,

the existence of a filamentous structure that supports the

nuclear compartmentalization is unnecessary, because this

function is performed just by the genome folded in a com�

plex manner in the nuclear space. Moreover, it would be

very difficult to explain the dynamic character of the

nuclear compartmentalization in the frame of the concept

of the nuclear matrix [166�170]. All the above�said does

not mean that there are no skeletal elements in the nucle�

us. There is much evidence in the scientific literature that

various non�coding RNAs have skeletal functions during

assembly of different nuclear compartments [171�174]. It

can be anticipated that the number of characterized RNAs

that perform skeletal functions will significantly increase.

However, there are no grounds to state that non�coding

RNA form a unified nuclear skeleton. All works men�

tioned above concerned solving of local tasks. It is neces�

sary to remember that there are other compounds, for

example phospholipids, in the cell nucleus in addition to

nucleic acids and proteins. Some observations suggest that

sphingomyelin plays a certain role in the organization of

the intranuclear space [175�179]. These results are simply

ignored by the majority of researchers who study the cell

nucleus compartmentalization. In this connection, it is

necessary to note that the existence of DNA was similarly

ignored until the middle of the last century.

It is not possible to explain all the observations made

during studies of the nuclear matrix only by RNP particle

aggregation in interchromatin channels in the course of

histone extraction by high�salt solutions. It was shown

that DNA is organized as loops in inactive nuclei of avian

erythrocytes and in mammalian and avian sperm cells

(where no RNP particles are formed) [180�183], and

these loops are similar to those revealed in active nuclei.

It is logical to assume that certain architectural elements

that keep the ends of these loops together should exist.

Having no intention to reanimate the concept of nuclear

matrix, we nevertheless believe that it is important to say

that the question of the existence of different architectur�

al elements in the cell nucleus that maintain intranuclear

organization at local levels needs further clarification.
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