Skip to main content
Log in

Polymerization of (+)-Catechin in a Deep Eutectic Solvent Using a Fungal Laccase: Physicochemical Properties of the Products and Inhibition of α-Glucosidase

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DESs) are an alternative to traditional organic solvents for enzymatic reactions between compounds with poor solubility. Biocatalytic polymerization of the flavonoid (+)-catechin (CC) was carried out with laccase from the fungus Trametes hirsuta in a DES–buffer mixture (betaine/glycerol 60 vol %–buffer 40 vol %). The conditions for the synthesis of catechin oligomers (oligoCCs) soluble in organic solvents have been selected. According to the data from high-performance liquid chromatography, the oligoCCs had average molecular weights of 10 620 and 2540 g/mol with polydispersity indices of 1.1 and 1.09, respectively. The physicochemical properties of the obtained oligomers were studied via UV-visible, FTIR, 1H and 13C NMR spectroscopy. The resulting oligoCCs inhibited the α-glucosidase activity (IC50 ~ 8 μg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Vinson, J.A., Adv. Exp. Med. Biol., 1998, vol. 439, pp. 151–164.

    Article  CAS  Google Scholar 

  2. Jankun, J., Selman, SH., Swiercz, R., and Skrzypczak-Jankun, E., Nature, 1997, vol. 387, no. 6633, p. 561.

    Article  CAS  Google Scholar 

  3. Bordoni, A., Hrelia, S., Angeloni, C., Giordano, E., Guarnieri, C., Caldarera, C.M., and Biagi, P.L., J. Nutr. Biochem., 2002, vol. 13, no. 2, pp. 103–111.

    Article  CAS  Google Scholar 

  4. Nakagawa, K., Ninomiya, M., Okubo, T., Aoi, N., Juneja, L.R., Kim, M., Yamanaka, K., and Miyazawa, T., J. Agric. Food Chem. 1999, vol. 47, no. 10, pp. 3967–3973.

    Article  CAS  Google Scholar 

  5. Kumar, S. and Pandey, A.K., Sci. World J., 2013, vol. 2013. Article no. 162750. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  6. Latos-Brozio, M., Masek, A., and Piotrowska, M., Biomacromolecules, 2021, vol. 11, no. 1, Article no. 50.

    Article  CAS  Google Scholar 

  7. Hagerman, A.E., Riedl, K.H., Jones, G.A., Sovik, K.N., Ritchard, N.T., Hartzfeld, P.W., and Riedel, T.L., J. Agric. Food Chem., 1998, vol.46, no. 5, pp. 1887–1892.

    Article  CAS  Google Scholar 

  8. Jeon, S.Y., Oh, S.J., Kim, E., and Imm, J.Y., J. Agric Food Chem., 2013, vol. 61, no. 19, pp. 4577–4584.

    Article  CAS  Google Scholar 

  9. Kurisawa, M., Chung, J.E., Uyama, H., and Kobayashi, Sh., Macromol. Biosci., 2003, vol. 3, no. 12, pp. 758–764.

    Article  CAS  Google Scholar 

  10. Kurisawa, M., Chung, J.E., Kim, Y.J., Uyama, H., and Kobayashi, Sh., Biomacromolecules, 2003, vol. 4, no. 3, pp. 469–471.

    Article  CAS  Google Scholar 

  11. Liang, J.Y., Yang, M.Y., Hu, A., and Chen, L.Y., J. Photochem. Photobiol. B: Biol., 2016, vol. 165, pp. 115–120.

    Article  CAS  Google Scholar 

  12. Oliver, S., Hook, J.M., and Boyer, C., Polym. Chem. 2017, vol. 8, no. 15, pp. 2317–2326.

    Article  CAS  Google Scholar 

  13. Kim, T., Choi, H.J., Eom, S.H., Lee, J., and Kim, T.H., Bioorg. Med. Chem. Lett., 2014, vol. 24, no. 6, pp. 1621–1624.

    Article  CAS  Google Scholar 

  14. Rasouli, H., Hossein-Ghazvini, S.M.-B., Adibi, H., and Khodarahmi, R., Food Funct., 2017, vol. 8, no. 5, pp. 1942–1954.

    Article  CAS  Google Scholar 

  15. Hollmann, F. and Arends, I., Polymers, 2012, vol. 4, no. 1, pp. 759–793.

    Article  Google Scholar 

  16. Bassanini, I., Ferrandi, E.E., Riva, S., and Monti, D., Catalysts, 2021, vol. 11, no. 1, p. 26.

    Article  CAS  Google Scholar 

  17. Witayakran, S. and Ragauskas, A.J., Adv. Synth. Catal., 2009, vol. 351, no. 9, pp. 1187–1209.

    Article  CAS  Google Scholar 

  18. Mogharabi, M. and Faramarzi, M.A., Adv. Synth. Catal., 2014, vol. 356, no. 5, pp. 897–927.

    Article  CAS  Google Scholar 

  19. Abbott, A., Boothby, D., Capper, G., Davies, D., and Rasheed, R., J. Am. Chem. Soc., 2004, vol. 126, no. 29, pp. 9142–9147.

    Article  CAS  Google Scholar 

  20. Smith, E., Abbott, A., and Ryder, K., Chem. Rev., 2014, vol. 114, no. 21, pp. 11060–11082.

    Article  CAS  Google Scholar 

  21. Dai, Y., Witkamp, GJ., Verpoorte, R., and Choi, Y., Food Chem., 2015, vol. 187, pp. 14–19.

    Article  CAS  Google Scholar 

  22. Cicco, L., Dilauro, G., Perna, F., Vitale, P., and Capriati, V., Org. Biomol. Chem., 2021, vol. 19, no. 12, pp. 2558–2577.

    Article  CAS  Google Scholar 

  23. Ünlü, A., Prasad, B., Anavekar, K., Bubenheim, P., and Liese, A., Prep. Biochem. Biotechnol., 2017, vol. 47, no. 9, pp. 918–924.

    Article  Google Scholar 

  24. Altundağ, A., Ünlü, A.E., and Takaç, S., J. Chem. Technol. Biotechnol., 2020, vol. 96, no. 4, pp. 1107–1115.

    Article  Google Scholar 

  25. Gorshina, E.S., Rusinova, T.V., Biryukov, V.V., Morozova, O.V., Shleev, S.V., and Yaropolov, A.I., Appl. Biochem. Microbiol., 2006, vol. 42, no. 6, pp. 558–563.

    Article  CAS  Google Scholar 

  26. Ehresmann, B., Imbault, P., and Well, J.H., Anal. Biochem., 1973, vol. 54, no. 2, pp. 454–463.

    Article  CAS  Google Scholar 

  27. Chertkov, V.A., Davydov, D.V., and Shestakova, A.K., Chem. Heterocycl. Compd., 2011, vol. 47, no. 1, pp. 45–54.

    Article  CAS  Google Scholar 

  28. Nazir, N., Zahoor, M., Ullah, R., Ezzeldin, E., and Mostafa, G.A.E., Molecules, 2021, vol. 26, no. 1. Article no. 137. https://doi.org/10.3390/molecules26010137

    Article  CAS  Google Scholar 

  29. Hammond, O.S., Bowron, D.T., and Elder, K.J., Angew. Chem. Int., 2017, vol. 56, no. 33, pp. 9782–9785.

    Article  CAS  Google Scholar 

  30. Ramos-Tejada, M.M., Durán, J.D.G., Ontiveros-Ortega, A., Espinosa-Jimenez, M., Perea-Carpio, R., and Chibowski, E., Colloids Surf. B: Biointerfaces, 2002, vol. 24, nos. 3–4, pp. 297–308.

    Article  CAS  Google Scholar 

  31. Chertkov, A.V., Pokrovskiy, O.I., Shestakova, A.K., and Chertkov, V.A., Chem. Heterocycl. Compd., 2008, vol. 44, no. 5, pp. 621–623.

    Article  CAS  Google Scholar 

  32. Tarascou, I., Baratheu, K., Andre, Y., Pianet, I., Dufourc, E.J., and Fouguet, E., Eur. J. Org. Chem., 2006, vol. 2006, no. 23, pp. 5367–5377.

    Article  Google Scholar 

  33. Khlupova, M., Vasil’eva, I., Shumakovich, G., Zaitseva, E., Chertkov, V., Shestakova, A., Morozova, O., and Yaropolov, A., Catalysts, 2021, vol. 11, no. 5. Article no. 639. https://doi.org/10.3390/catal11050639

    Article  CAS  Google Scholar 

Download references

Funding

The work was partially supported by the Russian Foundation for Basic Research (project no. 20-08-00104a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yaropolov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlupova, M.E., Morozova, O.V., Vasil’eva, I.S. et al. Polymerization of (+)-Catechin in a Deep Eutectic Solvent Using a Fungal Laccase: Physicochemical Properties of the Products and Inhibition of α-Glucosidase. Appl Biochem Microbiol 57, 712–718 (2021). https://doi.org/10.1134/S0003683821060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821060065

Keywords:

Navigation