Skip to main content
Log in

Changes in the Frequency of Phase Transitions of Different Types of El NIño Phenomena in Recent Decades

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Estimates of changes in the frequency of transitions between different phases of El Niño processes over the past seven decades (1950–2019) have been obtained. Positive (El Niño phase) and negative (La Niña phase) surface temperature anomalies in the equatorial latitudes of the Pacific Ocean are associated with the strongest interannual variations in global surface air temperature. Significant differences in trends have been revealed for different types of El Niño and La Niña phenomena, characterized by surface temperature anomalies in the equatorial latitudes of the eastern (Niño3) and central (Niño4) regions of the Pacific Ocean. The tendencies of an increase in the frequency of occurrence of El Niño phases using the Niño4 index and neutral phases using the Niño3 index are noted. At the same time, for both types of El Niño, there is a tendency towards a decrease in the frequency of occurrence of La Niña phases. A significant contribution to the noted trends is associated with the regimes of a long (at least one year) manifestation of the corresponding phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013)

    Google Scholar 

  2. J. Bjerknes, “A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature,” Tellus 18, 820–829 (1966).

    Article  Google Scholar 

  3. J. Bjerknes, “Atmospheric teleconnections from the equatorial Pacific,” Mon. Weather Rev. 97, 163–172 (1969).

    Article  Google Scholar 

  4. K. E. Trenberth, “The definition of El Niño,” Bull. Am. Meteorol. Soc. 78, 2771–2777 (1997).

    Article  Google Scholar 

  5. J. D. Neelin, D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, S. E. Zebiak, “ENSO theory,” J. Geophys. Res. 103, 14261–14290 (1998).

    Article  Google Scholar 

  6. K. Arpe, L. Bengtsson, G. S. Golitsyn, et al., “Analysis and modeling of the hydrological regime variations in the Caspian Sea basin,” Dokl. Earth Sci. 366 (4), 552–556 (1999).

    Google Scholar 

  7. G. V. Gruza, E. Ya. Ran’kova, L. K. Kleshchenko, and L. N. Aristova, “Relating climate anomaly in Russia with ENSO,” Meteorol. Gidrol., No. 5, 32–51 (1999).

  8. I. I. Mokhov, A. V. Eliseev, and D. V. Khvorost’yanov, “Evolution of the characteristics of interannual climate variability associated with the El Niño and La Niña phenomena,” Izv., Atmos. Ocean. 36 (6), 681–690 (2000).

    Google Scholar 

  9. M. Latif, K. Sperber, J. Arblaster, P. Braconnot, D. Chen, A. Colman, U. Cubasch, C. Cooper, P. Deleeluse, D. DeWitt, L. Fairhead, G. Flato, T. Hogan, M. Ji, M. Kimoto, et al., “ENSIP: the El Niño simulation intercomparison project,” Clim. Dyn. 18, 255–276 (2001).

    Article  Google Scholar 

  10. M. A. Petrosyants and D. Yu. Gushchina, “On the definition of the El Niño and La Niña phenomena,” Meteorol. Gidrol., No. 8, 24–35 (2002).

  11. I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, “Decadal and longer term changes in El Niño–Southern Oscillation characteristics,” Int. J. Climatol. 24, 401–414 (2004).

    Article  Google Scholar 

  12. N. K. Larkin and D. E. Harrison, “On the definition of El Niño and associated seasonal average U.S. weather anomalies,” Geophys. Res. Lett. 32, L13705 (2005).

    Article  Google Scholar 

  13. M. J. McPhaden, S. E. Zebiak, and M. H. Glantz, “ENSO as an integrating concept in earth science,” Science 314, 1740–1745 (2006).

    Article  Google Scholar 

  14. I. I. Mokhov and D. A. Smirnov, “Study of the mutual influence of the El Niño–Southern Oscillation processes and the North Atlantic and Arctic oscillations,” 42 (5), 598–614 (2006).

  15. S. Bronnimann, “Impact of El Nino–Southern Oscillation on European climate,” Rev. Geophys. 45, RG3003 (2007).

    Article  Google Scholar 

  16. K. Ashok and T. Yamagata, “The El Niño with a difference,” Nature 461, 481–484 (2009).

    Article  Google Scholar 

  17. J. S. Kug, F. F. Jin, and S. I. An, “Two Types of El Niño events: Cold tongue El Niño and warm pool El Niño,” J. Clim. 22, 1499–1515 (2009).

    Article  Google Scholar 

  18. S.-W. Yeh, J.-S. Kug, B. Dewitte, et al., “El Niño in a changing climate,” Nature 461, 511–514 (2009).

    Article  Google Scholar 

  19. M. Collins, S.-I. An, W. Cai, et al., “The impact of global warming on the tropical Pacific Ocean and El Niño,” Nat. Geosci. 3, 391–397 (2010).

    Article  Google Scholar 

  20. I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. 47 (6), 653–660 (2011).

    Google Scholar 

  21. K. Takahashi, A. Montecinos, K. Goubanova, and B. Dewitte, “ENSO regimes: Reinterpreting the canonical and Modoki El Niño,” Geophys. Res. Lett. 38, L10704 (2011).

    Article  Google Scholar 

  22. Y.-G. Ham and J.-S. Kug, “How well do current climate models simulate two types of El Niño?,” Clim. Dyn. 39, 383–398 (2012).

    Article  Google Scholar 

  23. M. Watanabe, J.-S. Kug, F.-F. Jin, et al., “Uncertainty in the ENSO amplitude change from the past to the future,” Geophys. Res. Lett. 39, L20703 (2012).

    Google Scholar 

  24. H. Bellenger, E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, “ENSO representation in climate models: From CMIP3 to CMIP5,” Clim. Dyn 42, 1999–2018 (2014).

    Article  Google Scholar 

  25. S. T. Kim, W. Cai, F. F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, “Response of El Niño sea surface temperature variability to greenhouse warming,” Nat. Clim. Change 4, 786–790 (2014).

    Article  Google Scholar 

  26. I. V. Zheleznova and D. Yu. Gushchina, “The response of global Atmospheric circulation to two types of El Nino,” Russ. Meteorol. Hydrol. 40 (3),170–179 (2015).

    Article  Google Scholar 

  27. I. I. Mokhov and A. V. Timazhev, “Assessment of the predictability of climate anomalies in connection with El Niño phenomena,” Dokl. Earth Sci. 464 (6), 1089–1093.

  28. M. Latif, V. A. Semenov, and P. Wonsun, “Super El Niños in response to global warming in a climate model,” Clim. Change 132, 489–500 (2015).

    Article  Google Scholar 

  29. I. I. Mokhov and V. A. Semenov, “Weather and climate anomalies in Russian regions related to global climate change, " Russ. Meteorol. Hydrol. 41 (2), 84–92 (2016).

    Article  Google Scholar 

  30. I. I. Mokhov and D. S. Smirnov, “Relation between the variations in the global surface temperature, El Niño/La Niña phenomena, and the Atlantic multidecadal oscillation,” Dokl. Earth Sci., 467 (2), 384–388 (2016).

    Article  Google Scholar 

  31. I. I. Mokhov and A. V. Timazhev, “Assessing the probability of El Niño-related weather and climate anomalies in Russian regions,” Russ. Meteorol. Hydrol. 42 (10), 635–643 (2017).

    Article  Google Scholar 

  32. W. Cai, G. Wang, B. Dewitte, et al., “Increased variability of eastern Pacific El Niño under greenhouse warming,” Nature 564, 201–206 (2018).

    Article  Google Scholar 

  33. I. I. Mokhov and A. V. Timazhev, “Phase transitions for different El Niño types and periods,” in Research Activities in Atmospheric and Oceanic Modelling, Ed. by E. Astakhova (2019), WCRP Rep. No. 12/2019, pp. 07–08.

  34. H.-L. Ren, J. Zuo, and Y. Deng, “Statistical predictability of Niño indices for two types of ENSO,” Clim. Dyn. 52, 5361–5382 (2019).

    Article  Google Scholar 

  35. B. Wang, X. Xiao Luo, Y.-M. Yang, W. Sun, M. A. Cane, W. Cai, S.-W. Yeh, and J. Liu, “Historical change of El Niño properties sheds light on future changes of extreme El Niño,” Proc. Natl. Acad. Sci. USA 116, 22512–22517 (2019).

    Article  Google Scholar 

  36. Y. Wang, Y. Luo, J. Lu, and F. Liu, “Changes in ENSO amplitude under climate warming and cooling,” Clim. Dyn. 52, 1871–1882 (2019).

    Article  Google Scholar 

  37. Z. Zhang, B. Ren, and J. Zheng, “A unified complex index to characterize two types of ENSO simultaneously,” Sci. Rep. 9, 8373 (2019). https://doi.org/10.1038/s41598-019-44617-1

    Article  Google Scholar 

  38. O. V. Marchukova, A. S. Lubkov, and E. N. Voskresenskaya, “The quality of the reproduction of El Niño and La Niña events using different reconstructed sea surface temperature data sets,” Vestn. S.-Peterb. Univ., Nauki Zemle 65 (1), 96–120 (2020).

    Google Scholar 

  39. I. I. Mokhov, “Anomalous winters in regions of northern Eurasia in different phases of the El Niño phenomena,” Dokl. Earth Sci. 493 (2), 649–653 (2020).

    Article  Google Scholar 

  40. I. I. Mokhov, A. V. Chernokulsky, and A. M. Osipov, “Atmospheric centers of action in the Northern and Southern Hemispheres: Features and variability,” Russ. Meteorol. Hydrol. 45 (11), 749–761 (2020).

    Article  Google Scholar 

  41. A. Carreric, B. Dewitte, W. Cai, et al., “Change in strong Eastern Pacific El Niño events dynamics in the warming climate,” Clim. Dyn. 54, 901–918 (2020).

    Article  Google Scholar 

  42. G. Beobide-Arsuaga, T. Bayr, A. Reintges, and M. Latif, “Uncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 models,” Clim. Dyn. 56, 3875–3888 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project 19-17-00240. The features of recent years were analyzed within the framework of a project and were supported by the Ministry of Education and Science of Russia, agreement no. 075-15-2020-776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I. Changes in the Frequency of Phase Transitions of Different Types of El NIño Phenomena in Recent Decades. Izv. Atmos. Ocean. Phys. 58, 1–6 (2022). https://doi.org/10.1134/S000143382201008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382201008X

Keywords:

Navigation