Skip to main content
Log in

Limits on the flux of ultrahigh-energy neutrinos from radio astronomical observations

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We discuss results from current experiments and prospects for future experiments aimed at detecting cosmic ultra-high-energy hadrons and neutrinos using radio astronomical methods proposed earlier by Dagkesamanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) and Zheleznykh. The target for the hadrons and neutrinos is the Moon, and the experiments are designed to detect nanosecond flashes of radio emission from electromagnetic and hadronic cascades produced by high-energy particles in the lunar soil (regolith) using the largest available radio telescopes. We present the results of numerical simulations of the generation of such radio impulses in neutrino reactions, taking into account the requirements for the emergence of the radio emission from the lunar soil. These simulations enable us to correctly relate the detection rate for the radio impulses to the flux of ultra-high-energy neutrinos. The results of the first searches for nanosecond radio flares from the Moon using the 64-m Kalyazin Radio Astronomical Observatory of the Astro Space Center are reported. Experimental limits on the diffuse flux of cosmic neutrinos with energies exceeding 1020 eV obtained from these and similar observations carried out in the USA using 70-m and 34-m radio telescopes are compared with theoretical predictions of the neutrino flux for various astrophysical models. Enhancing the sensitivity of such experiments and increasing their duration, especially monitoring the Moon simultaneously with several radio telescopes, could provide important results about the nature of ultra-high-energy cosmic rays in the relatively near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AGASA Collaboration, Astropart. Phys. 19, 447 (2003).

    Google Scholar 

  2. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  3. G. T. Zatsepin and V. A. Kuzmin, Pis’ma Zh. Éksp. Teor. Fiz. 4, 114 (1966) [JETP Lett. 4, 78 (1966)].

    Google Scholar 

  4. G. Sigl, Ann. Phys. 303, 117 (2003); astro-ph/0210049.

    ADS  Google Scholar 

  5. R. D. Dagkesamanskii and I. M. Zheleznykh, Pis’ma Zh. Éksp. Teor. Fiz. 50, 233 (1989) [JETP Lett. 50, 259 (1989)].

    ADS  Google Scholar 

  6. G. A. Gusev and I. M. Zheleznykh, Pis’ma Zh. Éksp. Teor. Fiz. 38, 505 (1983) [JETP Lett. 38, 611 (1983)].

    Google Scholar 

  7. G. A. Askar’yan, Zh. Éksp. Teor. Fiz. 41, 616 (1961) [Sov. Phys. JETP 14, 441 (1961)].

    Google Scholar 

  8. G. A. Askar’yan, Zh. Éksp. Teor. Fiz. 48, 988 (1965) [Sov. Phys. JETP 21, 701 (1965)].

    Google Scholar 

  9. M. A. Markov and I. M. Zheleznykh, Nucl Instrum. Methods Phys. Res. A 248, 242 (1986).

    Article  ADS  Google Scholar 

  10. A. L. Provorov (for the RAMAND Collaboration), in Proc. 3rd Int. Workshop on Neutrino Telescopes, Ed. by Milla Baldo Ceolin (Venice, 1991), p. 337.

  11. A. L. Provorov and I. M. Zheleznykh, Astropart. Phys. 4, 55 (1995).

    Article  ADS  Google Scholar 

  12. I. Kravchenko et al. (RICE Collaboration), Astropart. Phys. 20, 195 (2003).

    Article  ADS  Google Scholar 

  13. S. W. Barwick et al., Proc. SPIE 4858, 265 (2003).

    ADS  Google Scholar 

  14. I. M. Zheleznykh, Proc. 13th Intl. Conf. Neutrino Physics and Astrophysics, 1988, p. 528.

  15. R. D. Dagkesamanskii and I. M. Zheleznykh, Astrophysical Aspects of the Most Energetic Cosmic Rays, Ed. by M. Nagano and F. Takahara (World Scientific, Singapore, 1992), p. 373.

    Google Scholar 

  16. D. Saltzberg, P. W. Gorham, et al., Phys. Rev. Lett. 86, 2802 (2001).

    Article  ADS  Google Scholar 

  17. T. H. Hankins, R. D. Ekers, and J. D. O’Sullivan, Mon. Not. R. Astron. Soc. 283, 1027 (1996).

    ADS  Google Scholar 

  18. P. W. Gorham et al., Proc. RADHEP-2000 (2001), p. 177.

  19. P. W. Gorham, C. L. Hebert, K. M. Liewer, et al., astro-ph/0310232; Phys. Rev Lett. (in press).

  20. A. Beresnyak, astro-ph/0310295; Astron. Astrophys. (in press).

  21. Yu. P. Ilyasov, B. A. Poperechenko, and V. V. Oreshko, Tr. Fiz. Inst. im. P.N. Lebedeva, Akad. Nauk 229, 44 (2000).

    Google Scholar 

  22. I. E. Tamm, J. Phys. (Moscow) 1, 439 (1939).

    MATH  Google Scholar 

  23. E. Zas, F. Halzen, and T. Stanev, Phys. Rev. D 45, 362 (1992).

    Article  ADS  Google Scholar 

  24. J. Alvarez-Muniz, R. A. Vazquez, and E. Zas, Phys. Rev. D 62, 063001 (2000).

    Google Scholar 

  25. S. Razzaque, S. Seunarine, D. Z. Besson, D. W. McKay, J. P. Ralston, and D. Seckel, Phys. Rev. D 65, 103002 (2002).

    Google Scholar 

  26. R. Gandhi et al., Phys. Rev. D 58, 093009 (1998).

  27. L. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92, 535 (1953).

    Google Scholar 

  28. L. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92, 735 (1953).

    Google Scholar 

  29. A. B. Migdal, Phys. Rev. 103, 1811 (1956).

    Article  ADS  MATH  Google Scholar 

  30. A. B. Migdal, Zh. Éksp. Teor. Fiz. 5, 527 (1957) [Sov. Phys. JETP 5, 440 (1957)].

    MATH  MathSciNet  Google Scholar 

  31. S. Yoshida, H. Dai, C. C. H. Jui, and P. Sommers, Astrophys. J. 479, 547 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 82, No. 2, 2005, pp. 149–156.

Original Russian Text Copyright © 2005 by Beresnyak, Dagkesamanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Zheleznykh, Kovalenko, Oreshko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beresnyak, A.R., Dagkesamanskii, R.D., Zheleznykh, I.M. et al. Limits on the flux of ultrahigh-energy neutrinos from radio astronomical observations. Astron. Rep. 49, 127–133 (2005). https://doi.org/10.1134/1.1862359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1862359

Keywords

Navigation