Skip to main content
Log in

The Influence of the Counterion Nature on the Electroosmotic Transport of Free Solvent through an MK-40 Ion-Exchange Membrane

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The influence of the counterion nature on the electroosmotic transport of the free solvent through an MK-40 membrane in alkali metal chloride solutions has been experimentally studied. The proportion of free water in the total electroosmotic flux for Li+, Na+, and K+ cations has been evaluated. The experimental data on the electrotransport and physicochemical characteristics of the MK-40 membrane are used to calculate the transport numbers of free water in terms of the capillary model of electroosmotic transport of free water. The electroosmotic permeability depends on the ionic form of the MK-40 membrane due to the changes in the portion of through mesopores inside the membrane. When the concentration of the solution is greater than 1 mol/L, there is almost no free-water transfer across the heterogeneous membrane, and the water transport numbers are determined by the primary hydration numbers of ions in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J.-H. Tsai, F. Macedonio, E. Drioli, et al., J. Taiwan Inst. Chem. Eng. 80, 192 (2017).

    Article  CAS  Google Scholar 

  2. A. Bennett, L. Awerbuch, T. Pankratz, et al., Filtr. Sep. 53 (6), 30 (2016).

    Google Scholar 

  3. K. V. Protasov, S. A. Shkirskaya, N. P. Berezina, and V. I. Zabolotskii, Russ. J. Electrochem. 46, 1131 (2010).

    Article  CAS  Google Scholar 

  4. A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).

    Article  Google Scholar 

  5. V. I. Zabolotskii, O. A. Demina, and K. V. Protasov, Russ. J. Electrochem. 50, 412 (2014).

    Article  CAS  Google Scholar 

  6. I. V. Falina, O. A. Demina, and V. I. Zabolotskii, Colloid J. 79, 829 (2017).

    Article  CAS  Google Scholar 

  7. O. A. Demina, N. P. Berezina, T. Sata, and A. V. Demin, Russ. J. Electrochem. 38, 896 (2002).

    Article  CAS  Google Scholar 

  8. N. Berezina, N. Gnusin, O. Dyomina, and S. Timofeyev, J. Membr. Sci. 86, 207 (1994).

    Article  CAS  Google Scholar 

  9. Yu. M. Vol’fkovich, V. I. Luzhin, A. N. Vanyulin, et al., Elektrokhimiya 20, 656 (1984).

    Google Scholar 

  10. N. A. Kononenko, M. A. Fomenko, and Yu. M. Volf-kovich, Adv. Colloid Interface Sci. 222, 425 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. S. I. Niftaliev, O. A. Kozaderova, and K. B. Kim, J. Electroanal. Chem. 794, 58 (2017).

    Article  CAS  Google Scholar 

  12. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  13. V. K. Shahi, A. P. Murugesh, B. S. Makwana, et al., Indian J. Chem. 39A, 1264 (2000).

    CAS  Google Scholar 

  14. T. Luo, S. Abdu, and M. Wessling, J. Membr. Sci. 555, 429 (2018).

    Article  CAS  Google Scholar 

  15. Goronovskii, I.T., Nazarenko, Yu.P., and Nekryach, E.F., Concise Chemistry Handbook (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  16. E. A. Moelwyn-Hughes, Physical Chemistry (Pergamon, Oxford, 1961), 2nd Ed.

    Google Scholar 

  17. B. B. Tanganov, Usp. Sovrem. Estestvoznan., No. 12, 25 (2009).

  18. J. Koryta, J. Dvořák, and V. Bogáčková, Elektrochemie (Academia, Praha, 1975).

    Book  Google Scholar 

  19. G. Marcus, Trans. Faraday Soc. 82, 233 (1986).

    Article  CAS  Google Scholar 

  20. B. B. Taganov, Sovrem. Nauk. Tekhnol., No. 7, 90 (2010).

  21. Izmailov, N. A., Electrochemistry of Solutions (Khimiya, Moscow, 1976).

    Google Scholar 

  22. V. V. Mank, V. D. Grebenyuk, and O. D. Kurilenko, Dokl. Akad. Nauk SSSR 203, 1115 (1972).

    CAS  Google Scholar 

  23. Transport Processes in Solid Electrolytes and in Electrodes, Ed. by J. Hladik (Academic, London, 1974).

    Google Scholar 

  24. K. S. Spiegler, Trans. Faraday Soc. 54, 1408 (1958).

    Article  CAS  Google Scholar 

  25. M. V. Pevnitskaya, A. A. Kozina, and N. G. Evseev, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 4, 137 (1974).

    Google Scholar 

  26. N. P. Berezina, S. A. Shkirskaya, A. A.-R. Sycheva, and M.V. Krishtopa, Colloid J. 70, 397 (2008).

    Article  CAS  Google Scholar 

  27. S. A. Shkirskaya, E. V. Nazyrova, N. A. Kononenko, and O. A. Demina, Sorb. Khromatogr. Protsessy 16, 711 (2016).

    CAS  Google Scholar 

  28. G. Xie and T. Okada, Electrochim. Acta 41, 1569 (1996).

    Article  CAS  Google Scholar 

  29. Damaskin, B.B. and Petrii, O. A., Introduction to Electrochemical Kinetics (Vysshaya Shkola, Moscow, 1975) [in Russian].

    Google Scholar 

  30. A. Mauro, Biophys. J. 2, 179 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. V. I. Roldugin, Physical Chemistry of Surface (Intellekt, Dolgoprudnyi, 2008) [in Russian].

  32. N. V. Shel’deshov, V. V. Chaika, anf V. I. Zabolotskii, Russ. J. Electrochem. 46, 1036 (2008).

    Article  CAS  Google Scholar 

  33. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

FUNDING

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 10.3091.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Falina.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falina, I.V., Demina, O.A. & Zabolotsky, V.I. The Influence of the Counterion Nature on the Electroosmotic Transport of Free Solvent through an MK-40 Ion-Exchange Membrane. Membr. Membr. Technol. 1, 81–87 (2019). https://doi.org/10.1134/S2517751619020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619020033

Keywords:

Navigation