Skip to main content
Log in

Change in Interlayer Strength and Fracture Toughness of Carbon-Carbon Composite Material under the Impact of Cyclic Loads

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of low-cycle fatigue loading on interlayer strength and fracture toughness of discretely reinforced carbon-carbon composite material (CCCM) for friction use is studied. The material demonstrates good resistance to fatigue loads. In the described mechanisms for increasing CCCM fracture toughness after applying fatigue load, the fiber–matrix interface plays a key part. The dependences of CCCM fracture toughness and interlayer strength on the fatigue loading parameters are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fitzer, E. and Manocha, L.M., Carbon Reinforcements and Carbon/Carbon Composites, Berlin: Springer-Verlag, 1998.

    Book  Google Scholar 

  2. Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Interlayer Connections, and Composites Formed Thereof), Moscow: Aspekt-Press, 1997.

  3. Kumar, P. and Srivastava, V.K., A review on wear and friction performance of carbon–carbon composites at high temperature, Int. J. Appl. Ceram. Technol., 2016, vol. 13, no. 4, pp. 702–710.

    Article  CAS  Google Scholar 

  4. Wu, S., Liu, Y., Ge, Y., Ran, L., Peng, K., and Yi, M., Structural transformation of carbon/carbon composites for aircraft brake pairs in the braking process, Tribol. Int., 2016, vol. 102, pp. 497–506.

    Article  CAS  Google Scholar 

  5. Stepashkin, A.A., Mozolev, V.V., and Mostovoi, G.E., Evaluation of carbon–carbon brake disks of aircraft wheels taking into account the evolution of the mechanical properties of the material, Materialy 77-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii AAI “Avtomobile- i traktorostroenie v Rossii: prioritety razvitiya i podgotovka kadrov” (Proc. 77th Int. Sci.-Pract. Conf. of the Association of Automobile Engineers “Automobile and Tractor Manufacturing in Russia: Development Strategy and Human Resource Education”), Moscow: Mosk. Gos. Mashinostr. Univ., 2012, book 5, pp. 3–109.

  6. Cao, W., Li, H., Guo, L., and Zhang, S., Fracture mechanism of 2D–C/C composites with pure smooth laminar pyrocarbon matrix under flexural loading, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2141–2146.

    Article  CAS  Google Scholar 

  7. Chukov, D.I., Stepashkin, A.A., Tcherdyntsev, V.V., Kaloshkin, S.D., and Danilov, V.D., Strength and thermophysical properties of composite polymer materials filled with discrete carbon fiber, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 4, pp. 386–391.

    Article  Google Scholar 

  8. Yang, X., Li, H., Yu, K., and Zhang, S., Effect of stress level on fatigue behavior of 2D C/C composites, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2135–2140.

    Article  CAS  Google Scholar 

  9. Lu, X. and Xiao, P., Short time oxidation behavior and residual mechanical properties of C/C composites modified by in situ grown carbon nanofibers, Ceram. Int., 2014, vol. 40, pp. 10705–10709.

    Article  CAS  Google Scholar 

  10. Ozturk, A., The influence of cyclic fatigue damage on the fracture toughness of carbon-carbon composites, Composites, Part A, 1996, vol. 27, pp. 641–646.

    Article  Google Scholar 

  11. Li, X., Yu, S., Li, Y., Wu, Q., Li, Z., Xiao, T., Liu, L., and Guo, X., Effect of pre-fatigue on bending behavior of 2,5D C/C composites, Mater. Sci. Eng., A, 2017, vol. 682, pp. 290–295.

    Article  CAS  Google Scholar 

  12. Yan, K.F., Zhang, C.Y., Qiao, S.R., Song, C.Z., Han, D., and Li, M., Measurement of in-plane shear strength of carbon/carbon composites by compression of double-notched specimens, J. Mater. Eng. Perform., 2012, vol. 21, pp. 62–68.

    Article  CAS  Google Scholar 

  13. Zhang, C., Wang, H., Liu, Y., Qiao, S., Li, M., and Han, D., Interlaminar shear damage mechanisms of a 2D–C/SiC composite at elevated temperature in vacuum, Vacuum, 2014, vol. 105, pp. 63–68.

    Article  CAS  Google Scholar 

  14. Borovik, A.V., The effect of inelastic shear at the boundaries of fibers in a material with a unidirectional structure on the stress intensity coefficient for a crack in a fiber and the energy absorbed during destraction, Materialovedenie, 2015, no. 6, pp. 37–45.

  15. ASTM E1820: Standard Test Method for Measurement of Fracture Toughness, West Conshohocken, Pa: ASTM Int., 2017.

  16. Xia, L., Huang, B., Zhang, F., Liu, Z., and Chen, T., Effect of heat treatment on cracking and strength of carbon/carbon composites with smooth laminar pyrocarbon matrix, Mater. Des., 2016, vol. 107, pp. 33–40.

    Article  CAS  Google Scholar 

  17. Stepashkin, A.A., Ozherelkov, D.Yu., Sazonov, Yu.B., Komissarov, A.A., and Mozolev, V.V., Assessment of fracture toughness of a discretely-reinforced carbon-carbon composite material, Met. Sci. Heat Treat., 2015, vol. 57, nos. 3–4, pp. 229–235.

    Article  CAS  Google Scholar 

  18. Xue, L.Z., Li, K.Z., Jia, Y., Zhang, S.Y., Cheng, J., and Guo, J., Flexural fatigue behavior of 2D cross-ply carbon/carbon composites at room temperature, Mater. Sci. Eng., A, 2015, vol. 634, pp. 209–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Ozherelkov.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepashkin, A.A., Ozherelkov, D.Y., Sazonov, Y.B. et al. Change in Interlayer Strength and Fracture Toughness of Carbon-Carbon Composite Material under the Impact of Cyclic Loads. Inorg. Mater. Appl. Res. 10, 155–161 (2019). https://doi.org/10.1134/S2075113319010301

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319010301

Keywords:

Navigation