Skip to main content
Log in

Adsorption of argon on graphite and graphite with preadsorbed xenon monolayer: Simulation using the Monte Carlo technique

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The Monte Carlo technique in the “Gibbs” ensemble is used to calculate Henry constants of adsorption of argon on graphite and graphite with preadsorbed xenon monolayer with an ideal commensurate \(\left( {\sqrt 3 \times \sqrt 3 } \right)R30^ \circ\) structure. The calculation algorithm is described; it is shown that the obtained results agree well with the literature data. Simulation was carried out in the approximation of additivity of atom-atom potentials in the Lennard-Jones form (6,12) with parameters found from the properties of argon, xenon, and graphite without introducing any corrections. The results of calculations for both adsorption systems point both to translation mobility and vibrations of adsorbed argon atoms normally to the adsorbent surface. The contribution of the vibrational degree of freedom to the thermodynamic characteristics of adsorption of argon can be approximately accounted for within the harmonic oscillator model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel, D. and Smit, B., Understanding Molecular Simulation. From Algorithms to Applications, San Diego: Academic Press, 2002.

    Google Scholar 

  2. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon Press, 1987.

    Google Scholar 

  3. Landau, D.P. and Binder, K., A Guide to Monte Carlo Simulation in Statistical Physics, Cambridge: Cambridge Univ., 2009.

    Book  Google Scholar 

  4. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (Monte Carlo Technique in Statistical Thermodynamics), Moscow: Nauka, 1977.

    Google Scholar 

  5. Monte Carlo and Molecular Dynamics Simulations in Polymer Sciences, Binder, K., Ed., New York: Oxford Univ., 1995.

    Google Scholar 

  6. Nicholson, D. and Parsonage, N.G., Computer Simulation and the Statistical Mechanics of Adsorption, London: Academic Press, 1982.

    Google Scholar 

  7. Bakaev, V.A., in Adsorbtsiya v mikroporakh (Adsorption in Micropores), Moscow: Nauka, 1983, p. 55.

    Google Scholar 

  8. Rusanov, A.I., Brodskaya, E.N., Smirnova, N.A., and Piotrovskaya, E.M., in Adsorbtsiya v mikroporakh (Adsorption in Micropores), Moscow: Nauka, 1983, p. 63.

    Google Scholar 

  9. Steele, W., Appl. Surf. Sci., 2002, vol. 196, p. 3.

    Article  Google Scholar 

  10. Vernov, A. and Steele, W.A., Langmuir, 1991, vol. 7, p. 2817.

    Article  Google Scholar 

  11. Vernov, A. and Steele, W.A., Langmuir, 1991, vol. 7, p. 3110.

    Article  Google Scholar 

  12. Bakaev, V.A. and Steele, W.A., Langmuir, 1992, vol. 8, p. 148.

    Article  Google Scholar 

  13. Nguyen, V.T., Do, D.D., and Nicholson, D., J. Phys. Chem. C, 2011, vol. 114, p. 22171.

    Article  Google Scholar 

  14. Fan, C., Do, D.D., Li, Z., and Nicholson, D., Langmuir, 2010, vol. 26, p. 15852.

    Article  Google Scholar 

  15. Nguyen, V., Do, D., Nicholson, D., and Jagiello, J., J. Phys. Chem. C, 2011, vol. 115, p. 16142.

    Article  Google Scholar 

  16. Ustinov, E. and Do, D., Langmuir, 2012, vol. 28, p. 9543.

    Article  Google Scholar 

  17. Avgul’, N.N., Kiselev, A.V., and Poshkus, D.P., Adsorbtsiya gazov i parov na odnorodnykh poverkhnostyakh (Adsorption of Gases and Vapors on Uniform Surfaces), Moscow: Khimiya, 1975.

    Google Scholar 

  18. Kiselev, A.V., Mezhmolekulyarnye vzaimodeistviya v adsorbtsii i khromatografii (Intermolecular Interactions in Adsorption and Chromatography), Moscow: Vysshaya shkola, 1986.

    Google Scholar 

  19. Kiselev, A.V., Poshkus, D.P., and Yashin, Ya.I., Molekulyarnye osnovy adsorbtsionnoi khromatografii (Molecular Fundamentals of Adsorption Chromatography), Moscow: Khimiya, 1986.

    Google Scholar 

  20. Shcherbakova, K.D. and Yashin, Ya.I., Carbon Adsorbents in Chromatography, in 100 let khromatografii (100 Years of Chromatography), Moscow: Nauka, 2003, p. 670.

    Google Scholar 

  21. Yashin, Ya.I., Yashin, E.Ya., and Yashin, A.Ya., Gazovaya khromatografiya (Gas Chromatography), Moscow: TransLit, 2009.

    Google Scholar 

  22. Zheivot, V.I., J. Anal. Chem., 2006, vol. 61, no. 9, p. 832.

    Article  Google Scholar 

  23. Patrykiejew, A., Sokołowski, S., Zientarski, T., and Asada, H., Surf. Sci., 1994, vol. 314, p. 129.

    Article  Google Scholar 

  24. Grabowski, K., Patrykiejew, A., and Sokołowski, S., Surf. Sci., 2002, vol. 506, p. 47.

    Article  Google Scholar 

  25. Panagiotopoulos, A.Z., Mol. Phys., 1987, vol. 61, p. 813.

    Article  Google Scholar 

  26. Panagiotopoulos, A.Z., J. Phys.: Condens. Matter, 2000, vol. 12, p. R25.

    Google Scholar 

  27. Crowell, A.D., J. Chem. Phys., 1954, vol. 22, p. 1397.

    Article  Google Scholar 

  28. Bateman Manuscript Project. Tables of Integral Transforms, Erdelyi, A., Ed., New York, Toronto, London: McGraw-Hill Company, Inc., 1954.

    Google Scholar 

  29. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz, M. and Stegun, I.A., New York: Dover Publications, 1972.

    Google Scholar 

  30. Steele, W.A., Surf. Sci., 1973, vol. 36, p. 317.

    Article  Google Scholar 

  31. Kudryashov, S.Yu., Russ. J. Phys. Chem. A., 2010, vol. 84, no. 5, p. 858.

    Article  Google Scholar 

  32. Hirschfelder, J.O., Curtiss, Ch.F., and Bird, R.B., The Molecular Theory of Gases and Liquids, Wiley-Interscience, 1964.

    Google Scholar 

  33. Girifalco, L.A. and Lad, R.A., J. Chem. Phys., 1956, vol. 2, p. 693.

    Article  Google Scholar 

  34. Crowell, A.D., J. Chem. Phys., 1958, vol. 29, p. 446.

    Article  Google Scholar 

  35. Crowell, A.D. and Steele, R.B., J. Chem. Phys., 1961, vol. 34, p. 1347.

    Article  Google Scholar 

  36. Crowell, A.D., Surf. Sci., 1981, vol. 111, p. L667.

    Article  Google Scholar 

  37. Wu, S.-T., Surf. Sci., 1974, vol. 41, p. 475.

    Article  Google Scholar 

  38. Brown, D.G. and Hsue, C.S., J. Chem. Phys., 1976, vol. 65, p. 2501.

    Article  Google Scholar 

  39. Ren, C.Y. and Hsue, C.S., Phys. Rev. B, 2003, vol. 67, p. 1.

    Google Scholar 

  40. Grimm, B., Hövel, H., Pollmann, M., and Reihl, B., Phys. Rev. Lett., 1999, vol. 83, p. 991.

    Article  Google Scholar 

  41. Grimm, B., Hövel, H., Bödecker, M., et al., Surf. Sci., 2000, vol. 618, p. 454.

    Google Scholar 

  42. Lopatkin, A.A., Ross. Khim. Zh., 1996, vol. 40, p. 5.

    Google Scholar 

  43. Rudnitskaya, T.A. and Lopatkin, A.A., Russ. J. Phys. Chem., 1997, vol. 71, no. 3, p. 462.

    Google Scholar 

  44. Beebe, R.A. and Young, D.M., J. Phys. Chem., 1954, vol. 58, p. 93.

    Article  Google Scholar 

  45. Ross, S. and Winkler, W., J. Colloid Sci., 1955, vol. 10, p. 319.

    Article  Google Scholar 

  46. Bobka, R.J., Dinniny, R.E., Siebert, A.R., and Pace, E.L., J. Phys. Chem., 1957, vol. 61, p. 1646.

    Article  Google Scholar 

  47. Avgul, N.N., Bezus, A.G., Dobrova, E.S., and Kiselev, A.V., Colloids Interface Sci., 1973, vol. 42, p. 486.

    Article  Google Scholar 

  48. Sams, J.R., Constabaris, G., and Halsey, G.D., J. Phys. Chem., 1960, vol. 64, p. 1689.

    Article  Google Scholar 

  49. Rybolt, T.R. and Pierotti, R.A., J. Chem. Phys., 1979, vol. 70, p. 4413.

    Article  Google Scholar 

  50. Gardner, L., Kruk, M., and Jaroniec, M., J. Phys. Chem. B, 2001, vol. 105, p. 12516.

    Article  Google Scholar 

  51. Kruk, M., Li, Z., Jaroniec, M., and Betz, W., Langmuir, 1999, vol. 15, p. 1435.

    Article  Google Scholar 

  52. Ustinov, E.A., Russ. J. Phys. Chem., 2008, vol. 82, no. 12, p. 2134.

    Article  Google Scholar 

  53. Singleton, J.H. and Halsey, G.D., J. Phys. Chem., 1954, vol. 58, p. 330.

    Article  Google Scholar 

  54. Prenzlow, C.F. and Halsey, G.D., J. Phys. Chem., 1957, vol. 61, p. 1158.

    Article  Google Scholar 

  55. Barnes, M.W. and Steele, W.A., J. Chem. Phys., 1966, vol. 45, p. 461.

    Article  Google Scholar 

  56. Steele, W.A. and Kebbekus, E.R., J. Chem. Phys., 1965, vol. 43, p. 292.

    Article  Google Scholar 

  57. Lopatkin, A.A., Russ. J. Phys. Chem., 1997, vol. 71, no. 5, p. 811.

    Google Scholar 

  58. Kalashnikova, E.V. and Lopatkin, A.A., Izv. Akad. Nauk, Ser. Khim., 1997, vol. 46, p. 2173.

    Google Scholar 

  59. Smirnova, N.A., Metody statisticheskoi termodinamiki v fizicheskoi khimii (Methods of Statistical Thermiodynamics in Physical Chemistry), Moscow: Vysshaya shkola, 1982.

    Google Scholar 

  60. Yagodovskii, V.D., Statisticheskaya termodinamika v fizicheskoi khimii (Statistical Thermodynamics in Physical Chemistry), Moscow: BINOM, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kudryashov.

Additional information

Original Russian Text © S.Yu. Kudryashov, 2015, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2015, Vol. 51, No. 1, pp. 24–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, S.Y. Adsorption of argon on graphite and graphite with preadsorbed xenon monolayer: Simulation using the Monte Carlo technique. Prot Met Phys Chem Surf 51, 57–65 (2015). https://doi.org/10.1134/S2070205114060100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114060100

Keywords

Navigation