Skip to main content
Log in

Graphene for solar energy

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The current status and recent results of research aimed at the use of graphene and graphene-based materials in solar cells of various kinds are reviewed. The combination of remarkable properties such as high transparency, high mobility of charge carriers, high mechanical strength, and chemical inertness makes graphene a promising candidate as an electrode material. Data on the use of graphene in various photovoltaic systems, including organic polymer-based photovoltaics and dye-sensitized solar cells, are summarized and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Q. Sun, Q. Wu, and G. Q. Shi, Energy Environ. Sci. 4, 1113 (2011).

    Article  Google Scholar 

  2. X. Wang, L. J. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).

    Article  Google Scholar 

  3. W. J. Hong, Y. X. Xu, G. W. Lu, C. Li, and G. Q. Shi, Electrochem. Commun. 10, 1555 (2008).

    Article  Google Scholar 

  4. Z. Y. Yin, S. X. Wu, X. Z. Zhou, et al., Small 6, 307 (2010).

    Article  Google Scholar 

  5. J. L. Song, Z. Y. Yin, Z. J. Yang, et al., Chem.-Eur. J. 17, Art. 10832 (2011).

    Article  Google Scholar 

  6. Q. J. Xiang, J. G. Yu, and M. Jaroniec, Chem. Soc. Rev. 41, 782 (2012).

    Article  Google Scholar 

  7. X. Q. An and J. C. Yu, RSC Adv. 1, 1426 (2011).

    Article  Google Scholar 

  8. T. F. Yeh, J. M. Syu, C. Cheng, et al., Adv. Funct. Mater. 20, 2255 (2010).

    Article  Google Scholar 

  9. Y. Izumi, Coord. Chem. Rev. 257, 171 (2013).

    Article  Google Scholar 

  10. W. G. Tu, Y. Zhou, Q. Liu, et al., Adv. Funct. Mater. 22, 1215 (2012).

    Article  Google Scholar 

  11. L. A. Chernozatonskii and P. B. Sorokin, Usp. Fiz. Nauk 183, 113 (2013).

    Article  Google Scholar 

  12. Z. F. Liu, Q. Liu, Y. Huang, et al., Adv. Mater. 20, 3924 (2008).

    Article  Google Scholar 

  13. H. Jiang, P. S. Lee, and C. Li, Energy Environ. Sci. 6, 41 (2013).

    Article  Google Scholar 

  14. L. Dai, D. W. Chang, J.-B. Baek, and W. Lu, Small 8, 1130 (2012).

    Article  Google Scholar 

  15. J. Zhang and X. S. Zhao, Chem. Sus. Chem. 5, 818 (2012).

    Article  Google Scholar 

  16. G. Zhao, T. Wen, C. Chen, and X. Wang, RSC Adv. 2, 9286 (2012).

    Article  Google Scholar 

  17. R. S. Edwards and K. S. Coleman, Nanoscale 5, 38 (2013).

    Article  Google Scholar 

  18. A. Ghosh and Y. H. Lee, Chem. Sus. Chem. 5, 480 (2012).

    Article  Google Scholar 

  19. Y. Huang, J. Liang, and Y. Chen, Small 8, 1805 (2012).

    Article  Google Scholar 

  20. X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012).

    Article  Google Scholar 

  21. T. Kuila, A. K. Mishra, P. Khanra, et al., Nanoscale 5, 52 (2013).

    Article  Google Scholar 

  22. B. Luo, S. Liu, and L. Zhi, Small 8, 630 (2012).

    Article  Google Scholar 

  23. M. Pumera, Energy Environ. Sci. 4, 668 (2011).

    Article  Google Scholar 

  24. Y. Sun and G. Shi, J. Polym. Sci., Pt. B: Polym. Phys. 51, 231 (2013).

    Article  Google Scholar 

  25. Y. Sun, Q. Wu, and G. Shi, Energy Environ. Sci. 4, 1113 (2011).

    Article  Google Scholar 

  26. J. J. Vilatela and D. Eder, Chem. Sus. Chem. 5, 456 (2012).

    Article  Google Scholar 

  27. X. Wan, Y. Huang, and Y. Chen, Acc. Chem. Res. 45, 598 (2012).

    Article  Google Scholar 

  28. P. T. Xu, J. X. Yang, K. S. Wang, et al., Chin. Sci. Bull. 57, 2948 (2012).

    Article  Google Scholar 

  29. Y. Zhai, Y. Dou, P. F. Fulvio, et al., Adv. Mater. 23, 4828 (2011).

    Article  Google Scholar 

  30. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Usp. Fiz. Nauk 181, 233 (2011).

    Article  Google Scholar 

  31. A. Iwan and A. Chuchmala, Prog. Polym. Sci. 37, 1805 (2012).

    Article  Google Scholar 

  32. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Appl. Phys. Lett. 92, Art. 263302 (2008).

    Article  Google Scholar 

  33. G. Eda, Y.-Y. Lin, S. Miller, et al., Appl. Phys. Lett. 92, Art. 233305 (2008).

    Article  Google Scholar 

  34. L. G. De Arco, Y. Zhang, C. W. Schlenker, et al., ACS Nano 4, 2865 (2010).

    Article  Google Scholar 

  35. Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, Adv. Mater. 23, 1514 (2011).

    Article  Google Scholar 

  36. C. L. Hsu, C. T. Lin, J. H. Huang, et al., ACS Nano 6, 5031 (2012).

    Article  Google Scholar 

  37. Q. Liu, Z. Liu, and X. Zhang, Appl. Phys. Lett. 92, Art. 223303 (2008).

    Article  Google Scholar 

  38. A. Yella, H.-W. Lee, H. N. Tsao, et al., Science 334, 629 (2011).

    Article  Google Scholar 

  39. Y.-Y. Lee, K.-H. Tu, C.-C. Yu, et al., ACS Nano 5, 6564 (2011).

    Article  Google Scholar 

  40. H. Park, P. R. Brown, V. Bulovi, and J. Kong, Nano Lett. 12, 133 (2011).

    Article  Google Scholar 

  41. M. Choe, B. H. Lee, G. Jo, et al., Org. Electron. 11, 1864 (2010).

    Article  Google Scholar 

  42. Y. Wang, S. W. Tong, X. F. Xu, et al., Adv. Mater. 23, 1514 (2011).

    Article  Google Scholar 

  43. J. Kim, V. C. Tung, and J. Huang, Adv. Energy Mater. 1, 1052 (2011).

    Article  Google Scholar 

  44. K.-H. Tu, S.-S. Li, and W.-C. Li, Energy Environ. Sci. 4, 3521 (2011).

    Article  Google Scholar 

  45. Y. Xu, G. Long, L. Huang, et al., Carbon 48, 3308 (2010).

    Article  Google Scholar 

  46. X. Wang, L. J. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).

    Article  Google Scholar 

  47. D. W. Zhang, X. D. Li, H. B. Li, et al., Carbon 49, 5382 (2011).

    Article  Google Scholar 

  48. L. Kavan, J.-H. Yum, M. K. Nazeeruddin, and M. Grätzel, ACS Nano 5, 9171 (2011).

    Article  Google Scholar 

  49. L. Kavan, J.-H. Yum, and M. Grätzel, Nano Lett. 11, 5501 (2011).

    Article  Google Scholar 

  50. S. S. Li, Y. H. Luo, W. Lv, et al., Adv. Energy Mater. 1, 486 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Zitserman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eletskii, A.V., Zitserman, V.Y. & Kobzev, G.A. Graphene for solar energy. Nanotechnol Russia 10, 181–191 (2015). https://doi.org/10.1134/S1995078015020093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015020093

Keywords

Navigation