Skip to main content
Log in

Temperature quenching of spontaneous emission in tunnel-injection nanostructures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor S T of the integrated intensity I is S T = I 5/I 295 ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  2. V. Tokranov, M. Yakimov, A. Katsnelson, M. Lamberti, and S. Oktyabrsky, Appl. Phys. Lett. 83, 833 (2003).

    Article  ADS  Google Scholar 

  3. A. E. Zhukov, Semiconductor Nanostructure Lasers (Elmor, St.-Petersburg, 2007) [in Russian].

    Google Scholar 

  4. Zh. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).

    Article  ADS  Google Scholar 

  5. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, Electron. Lett. 42, 774 (2006). A ' E

    Article  Google Scholar 

  6. L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).

    Article  ADS  Google Scholar 

  7. P. Bhattacharya and S. Ghosh, Appl. Phys. Lett. 80, 3482 (2002).

    Article  ADS  Google Scholar 

  8. P. Bhattacharya and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).

    Article  ADS  Google Scholar 

  9. V. M. Ustinov, A. E. Zhukov, N. A. Maleev, and A. R. Kovsh, RF Patent No. 2205468 (2002).

    Google Scholar 

  10. V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P. Werner, U. Gösele, B. V. Novikov, A. S. Sokolov, Y. B. Samsonenko, V. A. Egorov, and G. E. Cirlin, Appl. Phys. Lett. 93, 031105 (2008).

    Article  ADS  Google Scholar 

  11. V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, T. Elsaesser, N. D. Zakharov, P. Werner, U. Gosele, Yu. B. Samsonenko, and G. E. Cirlin, Semiconductors 44, 1050 (2010).

    Article  ADS  Google Scholar 

  12. V. G. Talalaev, A. A. Tonkikh, N. D. Zakharov, A. V. Senichev, J. W. Tomm, P. Werner, B. V. Novikov, L. V. Asryan, B. Fuhrmann, J. Schilling, H. S. Leipner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Semiconductors 46, 1460 (2012).

    Article  ADS  Google Scholar 

  13. V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, L. V. Asryan, N. D. Zakharov, P. Werner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Vestn. SPb. Univ., Ser. 4, No. 3, 34 (2012).

    Google Scholar 

  14. V. G. Talalaev, G. E. Cirlin, L. I. Gorai, B. V. Novikov, J. W. Tomm, P. Werner, B. Fuhrmann, J. Schilling, and P. N. Racec, Semiconductors 48, 1178 (2014).

    Article  ADS  Google Scholar 

  15. V. G. Talalaev, G. E. Cirlin, B. V. Novikov, B. Fuhrmann, P. Werner, and J. W. Tomm, Appl. Phys. Lett. 106, 013104 (2015).

    Article  ADS  Google Scholar 

  16. A. V. Senichev, V. G. Talalaev, J. W. Tomm, B. V. Novikov, P. Werner, and G. E. Cirlin, Phys. Status Solidi (RRL) 5, 385 (2011).

    Article  ADS  Google Scholar 

  17. S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, Surf. Sci. 361–362, 778 (1996).

    Article  Google Scholar 

  18. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, Phys. Rev. B 60, 8276 (1999).

    Article  ADS  Google Scholar 

  19. C. Lobo, N. Perret, D. Morris, J. Zou, D. J. H. Cockayne, M. B. Johnston, M. Gal, and R. Leon, Phys. Rev. B 62, 2737 (2000).

    Article  ADS  Google Scholar 

  20. A. Patane, A. Polimeni, P. C. Main, M. Henini, and L. Eaves, Appl. Phys. Lett. 75, 814 (1999).

    Article  ADS  Google Scholar 

  21. H. Y. Liu, B. Xu, Q. Gong, D. Ding, F. Q. Liu, Y. H. Chen, W. H. Jiang, X. L. Ye, Y. F. Li, Z. Z. Sun, J. F. Zhang, J. B. Liang, and Z. G. Wang, J. Cryst. Growth 210, 451 (2000).

    Article  ADS  Google Scholar 

  22. K. Mukai and M. Sugawara, Appl. Phys. Lett. 74, 3963 (1996).

    Article  ADS  Google Scholar 

  23. M. B. Smirnov, V. G. Talalaev, B. V. Novikov, S. V. Sarangov, N. D. Zakharov, P. Werner, U. Gösele, J. W. Tomm, and G. E. Cirlin, Phys. Status Solidi B 247, 347 (2010).

    Article  ADS  Google Scholar 

  24. H. Lee, W. Yang, and P. C. Sercel, Phys. Rev. B 55, 9757 (1997).

    Article  ADS  Google Scholar 

  25. Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, J. Appl. Phys. 84, 3342 (1998).

    Article  ADS  Google Scholar 

  26. A. Polimeni, A. Patance, M. Henini, L. Eaves, and P. C. Main, Phys. Rev. B 59, 5064 (1999).

    Article  ADS  Google Scholar 

  27. Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin, J. Appl. Phys. 82, 4489 (1997).

    Article  ADS  Google Scholar 

  28. A. D. Lucio, L. A. Cury, F. M. Matinaga, J. F. Sampaio, A. A. Bernussi, and W. de Carvalho, J. Appl. Phys. 86, 537 (1999).

    Article  ADS  Google Scholar 

  29. G. Bacher, H. Schweizer, J. Kovac, and A. Forchel, Phys. Rev. B 43, 9312 (1991).

    Article  ADS  Google Scholar 

  30. V. G. Talalaev, Vestnik SPb. Univ., Ser. 4, No. 4, 20 (2001).

    Google Scholar 

  31. D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, Jr., E. Petitprez, N. la Scala, and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).

    Article  ADS  Google Scholar 

  32. Z. M. Wang, Self-Assembled Quantum Dots (Springer, New York, 2008), chap. 5.

    Book  Google Scholar 

  33. P. N. Racec and L. I. Goray, WIAS Preprint No. 1898 (Weierstr.-Inst. Angew. Anal. Stochastik, Leibniz Inst., Berlin, 2013). http://wias-berlinde/publications/wiaspubl/ indexjsp?lang=1.

    Google Scholar 

  34. F. C. Michl, R. Winkler, and U. Roessler, Solid State Commun. 99, 13 (1996).

    Article  ADS  Google Scholar 

  35. D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, Phys. Rev. B 45, 4274 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Talalaev.

Additional information

Original Russian Text © V.G. Talalaev, B.V. Novikov, G.E. Cirlin, H.S. Leipner, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 11, pp. 1531–1539.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talalaev, V.G., Novikov, B.V., Cirlin, G.E. et al. Temperature quenching of spontaneous emission in tunnel-injection nanostructures. Semiconductors 49, 1483–1492 (2015). https://doi.org/10.1134/S1063782615110214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615110214

Keywords

Navigation