Skip to main content
Log in

Proton-polarizability effect in the Lamb shift for the hydrogen atom

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The proton-polarizability contribution to the Lamb shift for the ordinary and muonic hydrogen atoms is calculated on the basis of the isobar model and experimental data on structure functions for deep-inelastic lepton-nucleon scattering. The contributions of Born terms, vector mesons, and nucleon resonances are taken into account in constructing cross sections for the absorption of transversely and longitudinally polarized virtual photons, σ T,L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1 (2005).

    Article  ADS  Google Scholar 

  2. S. G. Karshenboim, hep-ph/0509010.

  3. M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 63 (2001).

    Article  MATH  ADS  Google Scholar 

  4. E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982).

    Article  ADS  Google Scholar 

  5. K. Pachucki, Phys. Rev. A 53, 2092 (1996).

    Article  ADS  Google Scholar 

  6. E. Borie, physics/0410051 v2.

  7. G. G. Simon, Ch. Schmitt, F. Borkowski, and V. H. Walther, Nucl. Phys. A 333, 381 (1980).

    Article  ADS  Google Scholar 

  8. I. Sick, Prog. Part. Nucl. Phys. 55, 440 (2005).

    Article  ADS  Google Scholar 

  9. R. Pohl, A. Antognini, F. D. Amaro, et al., Can. J. Phys. 83, 339 (2005).

    Article  Google Scholar 

  10. R. Pohl, A. Antognini, F. D. Amaro, et al., in Proceedings of the International Conference on Exotic Atoms (EXA05), Vienna, 2005.

  11. S. D. Drell and J. D. Sullivan, Phys. Rev. 154, 1477 (1967).

    Article  ADS  Google Scholar 

  12. J. Bernabeu and T. E. O. Ericson, Z. Phys. A 309, 213 (1983).

    Article  Google Scholar 

  13. S. A. Startsev, V. A. Petrun’kin, and A. L. Khomkin, Yad. Fiz. 23, 1233 (1976) [Sov. J. Nucl. Phys. 23, 656 (1976)].

    Google Scholar 

  14. I. B. Khriplovich and R. A. Sen’kov, Phys. Lett. A 249, 474 (1998).

    Article  ADS  Google Scholar 

  15. R. Rosenfelder, Phys. Lett. B 463, 317 (1999).

    Article  ADS  Google Scholar 

  16. A. P. Martynenko and R. N. Faustov, Yad. Fiz. 63, 915 (2000) [Phys. At. Nucl. 63, 845 (2000)].

    Google Scholar 

  17. K. Pachucki, Phys. Rev. A 60, 3593 (1999).

    Article  ADS  Google Scholar 

  18. V. D. Burkert, Prog. Part. Nucl. Phys. 55, 108 (2005).

    Article  ADS  Google Scholar 

  19. K. Joo et al. (CLAS Collab.), Phys. Rev. Lett. 88, 122001 (2002).

  20. R. P. Feynman, Photon-Hadron Interactions (Benjamin, Reading, Mass., 1972; Mir, Moscow, 1975).

    Google Scholar 

  21. J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

    Article  ADS  Google Scholar 

  22. D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys. Rep. 378, 99 (2003).

    Article  ADS  Google Scholar 

  23. Review of Particle Physics, Phys. Lett. B 592, 1 (2004).

    Google Scholar 

  24. B. Badelek and J. Kwiecinski, Rev. Mod. Phys. 68, 445 (1996).

    Article  ADS  Google Scholar 

  25. F. W. Brasse, W. Flauger, J. Gayler, et al., Nucl. Phys. B 110, 413 (1976).

    Article  ADS  Google Scholar 

  26. H. Abramowicz and A. Levy, Preprint DESY 97-251, hep-ph/9712415 v2 (2004).

  27. R. L. Walker, Phys. Rev. 182, 1729 (1969).

    Article  ADS  Google Scholar 

  28. R. A. Arndt, R. L. Workman, Z. Li, and L. D. Roper, Phys. Rev. C 42, 1864 (1990).

    Article  ADS  Google Scholar 

  29. S. Teis, W. Cassing, M. Effenberger, et al., Z. Phys. A 356, 421 (1997).

    Article  Google Scholar 

  30. M. Effenberger, A. Hombach, S. Teis, and U. Mosel, Nucl. Phys. A 613, 353 (1997).

    Article  ADS  Google Scholar 

  31. B. Krusche, J. Ahrens, G. Anton, et al., Phys. Rev. Lett. 74, 3736 (1995).

    Article  ADS  Google Scholar 

  32. N. Bianchi, V. Muccifora, E. De Sanctis, et al., Phys. Rev. C 54, 1688 (1996).

    Article  ADS  Google Scholar 

  33. D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator, Nucl. Phys. A 645, 145 (1999).

    Article  ADS  Google Scholar 

  34. Y.-B. Dong, Eur. Phys. J. A 1, 347 (1998).

    Article  ADS  Google Scholar 

  35. M. Effenberger, A. Hombach, S. Teis, and U. Mosel, Nucl. Phys. A 614, 501 (1997).

    Article  ADS  Google Scholar 

  36. Z. Li and Y.-B. Dong, Phys. Rev. D 54, 4301 (1996).

    Article  ADS  Google Scholar 

  37. A. I. L’vov, V. A. Petrun’kin, and M. Shumacher, Phys. Rev. C 55, 359 (1997).

    Article  Google Scholar 

  38. I. G. Aznauryan, V. D. Burkert, H. Egiyan, et al., Phys. Rev. C 71, 015201 (2005).

    Google Scholar 

  39. R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980).

    Article  ADS  Google Scholar 

  40. F. E. Close and Z. Li, Phys. Rev. D 42, 2194, 2207 (1990).

    Article  ADS  Google Scholar 

  41. S. Capstick, Phys. Rev. D 46, 1965, 2864 (1992).

    Article  ADS  Google Scholar 

  42. Zhenping Li, V. Burkert, and Zhujun Li, Phys. Rev. D 46, 70 (1992).

    Article  ADS  Google Scholar 

  43. M. Warns, W. Pfeil, and H. Rollnik, Phys. Rev. D 42, 2215 (1990).

    Article  ADS  Google Scholar 

  44. W.-T. Chiang, S. N. Yang, L. Tiator, and D. Drechsel, Nucl. Phys. A 700, 429 (2002).

    Article  ADS  Google Scholar 

  45. F. E. Close, An Introduction to Quarks and Partons (Academic, London, 1979; Mir, Moscow, 1982).

    Google Scholar 

  46. T. A. Armstrong, W. R. Hogg, G. M. Lewis, et al., Phys. Rev. D 5, 1640 (1972).

    Article  ADS  Google Scholar 

  47. M. MacCormick, G. Audit, N. d’Hose, et al., Phys. Rev. C 53, 41 (1996).

    Article  ADS  Google Scholar 

  48. V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972) [Sov. J. Nucl. Phys. 15, 438 (1972)]; Yu. L. Dokshitser, Zh. Éksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)]; G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Google Scholar 

  49. E. Leader and E. Predazzi, An Introduction to Gauge Theories and the New Physics (Cambridge Univ. Press, Cambridge, 1982; Naukova Dumka, Kiev, 1990).

    Google Scholar 

  50. M. Miyama and S. Kumano, Comput. Phys. Commun. 94, 185 (1996).

    Article  ADS  Google Scholar 

  51. K. Abe, T. Akagi, P. L. Anthony, et al., Preprint SLAC-PUB-7927 1998.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Martynenko, 2006, published in Yadernaya Fizika, 2006, Vol. 69, No. 8, pp. 1344–1351.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynenko, A.P. Proton-polarizability effect in the Lamb shift for the hydrogen atom. Phys. Atom. Nuclei 69, 1309–1316 (2006). https://doi.org/10.1134/S1063778806080072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778806080072

PACS numbers

Navigation