Skip to main content
Log in

Atomistic simulation of laser ablation of gold: Effect of pressure relaxation

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The process of ablation of a gold target by femto- and picosecond laser radiation pulses has been studied by numerical simulations using an atomistic model with allowance for the electron subsystem and the dependence of the ion-ion interaction potential on the electron temperature. Using this potential, it is possible to take into account the change in the physical properties of the ion subsystem as a result of heating of the electron subsystem. The results of simulations reveal a significant difference between the characteristics of metal ablation by laser pulses of various durations. For ablation with subpicosecond pulses, two mechanisms of metal fracture related to the evolution of electronic pressure in the system are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments, and Applications (Pan Stanford, Temasek, 2011).

    Google Scholar 

  2. A. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, Opt. Lett. 34, 941 (2009).

    Article  ADS  Google Scholar 

  3. N. M. Bulgakova, R. Stoyan, and A. Rozenfel’d, Kvantovaya Elektron. (Moscow) 40, 966 (2010).

    Article  Google Scholar 

  4. Z. Lin, L. Zhigilei, and V. Celli, Phys. Rev. B: Condens. Matter 77, 075133 (2008).

    Article  ADS  Google Scholar 

  5. R. Ernstorfer, M. Hard, C. Hebeisen, G. Sciaini, T. Dartigalongue, and R. J. D. Miller, Science (Washington) 323, 1033 (2009).

    Article  ADS  Google Scholar 

  6. A. Vorobyev and C. Guo, Phys. Rev. B: Condens. Matter 72, 195422 (2005).

    Article  ADS  Google Scholar 

  7. J. Krzywinski, R. Sobierajski, M. Jurek, R. Nietubyc, J. B. Pelka, L. Juha, M. Bittner, V. Létal, V. Vorlí ek, A. Andrejczuk, J. Feldhaus, B. Keitel, E. L. Saldin, E. A. Schneidmiller, R. Treusch, and M. V. Yurkov, J. Appl Phys. 101, 043107 (2007).

    Article  ADS  Google Scholar 

  8. S. V. Starikov, V. V. Stegailov, G. E. Norman, V. E. Fortov, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, E. Ochi, T. Imazono, T. Kavachi, S. Tamotsu, T. A. Pikuz, I. Yu. Skobelev, and A. Ya. Faenov, JETP Lett. 93(11), 642 (2011).

    Article  ADS  Google Scholar 

  9. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, JETP 107(1), 1 (2008).

    Article  ADS  Google Scholar 

  10. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009).

    Article  ADS  Google Scholar 

  11. J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, Phys. Rev. B: Condens. Matter 71, 165406 (2005).

    Article  ADS  Google Scholar 

  12. B. Chimier, V. Tikhonchuk, and L. Hallo, Appl. Phys. A 92, 843 (2008).

    Article  ADS  Google Scholar 

  13. M. Povarnitsyn, T. Itina, K. Khishchenko, and P. Levashov, Phys. Rev. Lett. 103, 195002 (2009).

    Article  ADS  Google Scholar 

  14. C. Schafer and H. Urbassek, Phys. Rev. B: Condens. Matter 66, 115404 (2002).

    Article  ADS  Google Scholar 

  15. D. Ivanov and L. Zhigilei, Phys. Rev. B: Condens. Matter 68, 064114 (2003).

    Article  ADS  Google Scholar 

  16. B. Demaske, V. Zhakhovsky, N. Inogamov, and I. Oleynik, Phys. Rev. B: Condens. Matter 82, 064113 (2010).

    Article  ADS  Google Scholar 

  17. W. Hu, Y. C. Shin, and G. King, Phys. Rev. B: Condens. Matter 82, 094111 (2010).

    Article  ADS  Google Scholar 

  18. A. M. Rutherford and D. M. Duffy, J. Phys.: Condens. Matter 19, 496201 (2007).

    Article  Google Scholar 

  19. V. Recoules, J. Clérouin, G. Zérah, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006).

    Article  ADS  Google Scholar 

  20. V. Stegailov, Contrib. Plasma Phys. 50, 31 (2010).

    Article  ADS  Google Scholar 

  21. F. Bottin and G. Zerah, Phys. Rev. B: Condens. Matter 74, 174114 (2007).

    Article  ADS  Google Scholar 

  22. S. Khakshouri, D. Alfe, and D. Duffy, Phys. Rev. B: Condens. Matter 78, 224304 (2008).

    Article  ADS  Google Scholar 

  23. G. Gurtubay, J. M. Pitarke, and P. Echenique, Phys. Rev. B: Condens. Matter 69, 245106 (2004).

    Article  ADS  Google Scholar 

  24. J. Chen, D. Tzou, and J. Beraun, Appl. Phys. Lett. 46, 307 (2006).

    Google Scholar 

  25. Y. Gan and J. Chen, Appl. Phys. Lett. 94, 201116 (2009).

    Article  ADS  Google Scholar 

  26. R. Ernstorfer, M. Hard, C. Hebeisen, G. Sciaini, T. Dartigalongue, and R. J. D. Miller, Science (Washington) 323, 1033 (2009).

    Article  ADS  Google Scholar 

  27. M. Daw and M. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  ADS  Google Scholar 

  28. M. Daw, S. Foiles, and M. Baskes, Mater. Sci. Rep. 9, 251 (1993).

    Article  Google Scholar 

  29. P. Brommer and F. Gahler, Modell. Simul. Mater. Sci. Eng. 15, 295 (2007).

    Article  ADS  Google Scholar 

  30. F. Ercolessi and J. Adams, Europhys. Lett. 26, 583 (1994).

    Article  ADS  Google Scholar 

  31. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  ADS  Google Scholar 

  32. A. B. Belonoshko, Geochim. Cosmochim. Acta 58, 4039 (1994).

    Article  ADS  Google Scholar 

  33. S. Starikov and V. Stegailov, Phys. Rev. B: Condens. Matter 106, 955 (2009).

    Google Scholar 

  34. A. Lankin and G. Norman, J. Phys. A: Math. Theor. 42, 214032 (2009).

    Article  ADS  Google Scholar 

  35. S. Plimpton, J. Comput. Phys. 117, 1 (1995); http://lammps.sandia.gov/index.html.

    Article  ADS  MATH  Google Scholar 

  36. V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, JETP Lett. 87(8), 423 (2008).

    Article  ADS  Google Scholar 

  37. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Starikov.

Additional information

Original Russian Text © G.E. Norman, S.V. Starikov, V.V. Stegailov, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 5, pp. 910–918.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norman, G.E., Starikov, S.V. & Stegailov, V.V. Atomistic simulation of laser ablation of gold: Effect of pressure relaxation. J. Exp. Theor. Phys. 114, 792–800 (2012). https://doi.org/10.1134/S1063776112040115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112040115

Keywords

Navigation