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1. INTRODUCTION 

High-temperature superconductors based on lay-
ered cuprates have a rather rich phase diagram. These
materials at low doping levels belong to the class of
quasi-two-dimensional antiferromagnets. The tempera-
ture dependence of the magnetic susceptibility in the
paramagnetic phase obeys the Curie–Weiss law. At
high doping levels, these materials are metals with the
Pauli–Landau paramagnetism. The description of the
magnetism for the region intermediate between the
insulator and metal phases is an important problems in
physics [1]. The 

 

t–J

 

 model is considered the main
model for describing the dual character of the magne-
tism in these compounds [2]. The parameter 

 

t

 

 corre-
sponds to hopping of electrons (doped holes) from one
site to another, and 

 

J

 

 is the parameter of the superex-
change interaction between localized copper spins. The
parameter 

 

V

 

 of the Coulomb interaction of electrons, as
a rule, is considered insignificant in the theory of mag-
netism and is hence omitted for brevity. However, in the
general case, the Coulomb interaction is undeniably
important. In particular, this interaction is necessary for
describing the spectrum of plasmon modes and phase
separations in the systems under consideration. 

The available works devoted to the study of the dual
character of magnetism in the intermediate region of
the phase diagram of high-temperature superconduc-
tors can be separated into two groups. The authors of
[3–7] and other works (see references in [7]) begin with
the dielectric phase in which the number of charge car-
riers is small and superconductivity is absent; they sim-
ply include the susceptibility of itinerant electrons as an
additive component [3]. By contrast, in works of the
other group [8–12], researchers consider the conduct-
ing phase as basic. Particular emphasis has been placed
on the analysis of the magnetic susceptibility of itiner-
ant electrons, for which the motion is correlated by the
condition of the simultaneous absence of two charge
carriers at the same site (lower Hubbard subband). In
this case, the susceptibility of localized spins is
ignored. 

In this paper, we derive a new relationship for the
dynamic spin susceptibility in terms of the 

 

t

 

–

 

J

 

–

 

V

 

model. In the dielectric limit when the charge carrier
concentration is zero, the derived relationship corre-
sponds exactly to the spin susceptibility of a two-
dimensional antiferromagnet. At the same time, our
formula in the case where the spin–spin correlation
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Abstract

 

—A formula for the dynamic spin susceptibility is derived in terms of the 

 

t

 

–

 

J

 

–

 

V

 

 model. This formula
makes it possible to explain the main features of recent experiments on neutron scattering in the electron-doped
superconductor Pr

 

0.88

 

LaCe

 

0.12

 

CuO

 

4 – 

 

x

 

. In particular, the proposed theory reproduces well a V-shaped relief in
the frequency behavior of the imaginary part 

 

χ

 

''(

 

Q

 

,

 

 ω

 

) of the susceptibility of the Pr

 

0.88

 

LaCe

 

0.12

 

CuO

 

4 – 

 

x

 

 com-
pound in the vicinity of the wave vector 

 

Q

 

 = (

 

π

 

, 

 

π

 

) and the scaling behavior of the position of the maxima in
the dependence of the function 

 

χ

 

''(

 

Q

 

,

 

 ω

 

)

 

Τ

 

 on the quantity 

 

ω

 

/

 

T

 

. The magnetism of the high-temperature super-
conductors is dual. These materials contain charge carriers, on the one hand, and localized spins in the copper
ion sublattice, on the other hand. Both these systems are strongly coupled to each other. The mode of collective
oscillations is common. The magnetism of localized spins “freezes” with the appearance of the superconducting
gap. The recently revealed double-peak structure of the imaginary part 

 

χ

 

''(

 

Q

 

,

 

 ω

 

) of the susceptibility in super-
conductors of the La

 

1.84

 

Sr

 

0.16

 

CuO

 

4

 

 type is explained. The low-frequency absorption peak is located within the
superconducting gap and interpreted as a manifestation of the branch of spin excitons, and the high-frequency
absorption peak predominantly corresponds to renormalized collective oscillations of localized spins. 
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functions of localized spins are zero (metal phase) cor-
responds to the generalized random-phase approxima-
tion for metals with strong electron correlations. As an
application of the derived relationship, we analyze the
neutron scattering data for the electron-doped super-
conductor Pr

 

0.88

 

LaCe

 

0.12

 

CuO

 

4 – 

 

x

 

. A short communica-
tion on this subject was published in our earlier work
[13]. In the present paper, we thoroughly describe the
derivation of the formula obtained in [13] for the
dynamic spin susceptibility and compare it in detail
with the experimental data on neutron scattering for
this system [14]. We offer a new explanation for the
scaling behavior of the imaginary part of the suscepti-
bility multiplied by the temperature as a function of the
ratio between the frequency and the temperature in both
the normal and superconducting phases of the
Pr

 

0.88

 

LaCe

 

0.12

 

CuO

 

4 – 

 

x

 

 compound. This scaling phenom-
enon in the vicinity of the wave vector 

 

Q

 

 = (

 

π

 

, 

 

π

 

) in the
Pr

 

0.88

 

LaCe

 

0.12

 

CuO

 

4 – 

 

x

 

 superconductor was recently dis-
covered by Wilson et al. [15]. Moreover, we demon-
strate that the derived formula after the performance of
the electron–hole transformation allows us to explain
the origin of two peaks of neutron scattering in the
vicinity of the wave vector 

 

Q

 

 = (

 

π

 

, 

 

π

 

) for 

 

p

 

-type super-
conductors La

 

2 – 

 

x

 

Sr

 

x

 

CuO

 

4

 

. 

2. DERIVATION OF THE FORMULA
FOR THE SPIN SUSCEPTIBILITY 

The Hamiltonian of the 

 

t

 

–

 

J

 

–

 

V

 

 model in the repre-
sentation of the Hubbard operators has the form

(1)

Here, the first term describes electron hops between
sites of a two-dimensional lattice, the second term rep-
resents the superexchange interaction of spins, and the
last term corresponds to the Coulomb interaction
between charge carriers at different sites. In summa-

tion, it is assumed that 

 

i

 

 

 

≠

 

 

 

j

 

. In relationship (1),  are
the Hubbard operators; the indices 

 

p 

 

and 

 

s

 

 can take on

values 0, 

 

σ

 

, and  (

 

σ

 

 = 

 

↑

 

 and 

 

↓

 

,  = –

 

σ

 

); and 

( ) are the creation (annihilation) operators for
electrons at the

 

 i

 

th site with the spin 

 

σ

 

. 

H Ht HJ HV+ + tij Xi
σ 0, X j

0 σ,

i j σ, ,
∑= =

+
1
4
---Jij Xi

σ σ, X j
σ σ, Xi

σ σ, X j
σ σ,–( )

i j σ, ,
∑

+
1
2
---Vij Xi

0 0, X j
0 0, .

i j,
∑

Xi
p s,

σ σ Xi
σ 0,

Xi
0 σ,

In deriving the equation of motion for the Fourier
transform of the spin operator

we use the projection operator technique (q is the recip-
rocal lattice vector and Ri is the radius vector of the ith
site). The anticommutation relations have the form 

(2)

(3)

where δij is the Kronecker symbol. These relations are

obtained from the completeness condition  +  +

 = 1 and the expressions for the spin operators 

and the operator of the charge carrier density per unit

cell  = δi. In the frequency representation, the

Green’s function  is written in the form 

(4)

Here, as in [3–7], we took into account that the long-

range magnetic order is absent; i.e.,  = 0. 

Initially, we examine the Green’s function 

(5)

This function corresponds to the system of itinerant
electrons. In order to calculate the Green’s function, we
consider the product of the operators 

(6)

Sq
+ 1

N
---- Xi

↑ ↓, iq Ri⋅( )exp
i

∑=

Xi
0 ↑, X j

↑ 0,,{ } Xi
0 0, Xi

↑ ↑,+( )δij=

=  
1 δi+

2
------------- Si

z+⎝ ⎠
⎛ ⎞ δij,

Xi
0 ↓, X j

↓ 0,,{ } Xi
0 0, Xi

↓ ↓,+( )δij=

=  
1 δi+

2
------------- Si

z–⎝ ⎠
⎛ ⎞ δij,

Xi
0 0, Xi

↑ ↑,

Xi
↓ ↓,

Si
z 1

2
--- Xi

↑ ↑, Xi
↓ ↓,–( ), Si

+ Xi
↑ ↓, , Si

– Xi
↓ ↑,= = =

Xi
0 0,

Sq
+ S q–

–〈 | 〉〈 〉

ω Sq
+ S q–

–〈 | 〉〈 〉 Sq
+ H,[ ] S q–

–〈 | 〉〈 〉=

=  
1
N
---- tk q+ tk–( ) Xk q+

0 ↓, Xk
↑ 0, S q–

–〈 | 〉〈 〉
k

∑–
1
N
----+

× Jil iq– Ri⋅( ) Sl
+Si

z Sl
zSi

+–( ) S q–
–〈 | 〉〈 〉 .exp

i j,
∑

Si
z

i∑〈 〉

Git ω q,( ) 1
N
---- tk q+ tk–( ) Xk q+

0 ↓, Xk
↑ 0, S q–

–〈 | 〉〈 〉 .
k

∑–=

Xk q+
0 ↓, Xk

↑ 0, 1
N
---- X j

0 ↓, Xi
↑ 0,

i j,
∑=

× i k q+( ) R j⋅–[ ] i k⋅ Ri( ).expexp
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It can be seen that these operators satisfy the following
identity: 

(7)

which will be used in the form 

(8)

In order to calculate the commutator

, we use the decoupling scheme [16], in
which the random-phase approximation is combined
with the Zwanzig–Mori projection operator technique
so that the results are obtained in the case of simple
metals. For example, the product of the operators

 in the site representation can be written in the
form 

(9)

The coefficients  and  are found in the same
way as in the conventional projection technique for the
subspace of the creation and annihilation operators for
electrons. Physically, the parameter Ft is intended to
retain the molecular-field effects associated with spins
and doped electrons and to provide the stability condi-
tion. The imaginary part of the susceptibility should be
positive. In the general case, according to this scheme,
it is possible to introduce three decoupling parameters:
Ft, FJ, and FV . 

At T > Tc , using the above technique, we obtain 

(10)

where

Xk q+
0 ↓, Xk

↑ 0,

k

∑ 0,=

Xk q+
0 ↓, Xk

↑ 0, S q–
–〈 | 〉〈 〉

k

∑ 0.=

Xk q+
0 ↓, Xk

↑ 0, H,[ ]

X j
↑ ↓, Xs

↓ 0,

t jsX j
↑ ↓, Xs

↓ 0, t jsX j
↑ ↓, Xs

↓ 0, 1 Ft–( ) t jsFt X j
↑ ↓, Xs

↓ 0,+=

=  t js 1 Ft–( )S j
+Xs

↓ 0, ε jsn
tr Xn

↑ 0, ∆jsn
tr Xn

0 ↓,+( ).+

ε jsn
tr ∆jsn

tr

Xk q+
0 ↓, Xk

↑ 0, Ht HJ HV+ +( ),[ ]

=  εk q+ εk–( )Xk q+
0 ↓, Xk

↑ 0, 1 Ft–( ) tk Xk
0 ↑, Xk

↑ 0,〈 〉(+

– tk q+ Xk q+
0 ↓, Xk q+

↓ 0,〈 〉 )Sq
+

+
Jq

2
-----FJ Xk

0 ↑, Xk
↑ 0,〈 〉 Xk q+

0 ↓, Xk q+
↓ 0,〈 〉–( )Sq

+

–
1
N
---- εk ' q+ εk '–( )Xk ' q+

0 ↓, Xk '
↑ 0, ,

k '

∑

Jq 2J1γ q 2J1 qxa( )cos qya( )cos+[ ],≡=

tk tlj ik Rl R j–( )⋅[ ]exp
j

∑=

are the Fourier transforms of the superexchange inter-
action and the hopping integrals, respectively; a is the
lattice constant; and 

(11)

is the dispersion law for quasiparticles. This law is con-
veniently rewritten in the form typical of strong cou-
pling: 

(12)

As can be seen, the effective band parameters are
defined by the expressions

(13)

where P = (1 + δ)/2; δ is the mean number of charge
carriers per unit cell; and V1, V2, and V3 are the Cou-
lomb interaction parameters for the nearest, next near-
est, and third nearest neighbors, respectively. 

The spin–spin correlation functions Kn = 4
are self-consistently calculated in terms of the dynamic
spin susceptibility. The calculation procedure is
described in Appendix A. In the course of calculations,

εk tli
1 δ+

2
------------

2
1 δ+
------------ 1 2Ft+( ) Sl

zSi
z〈 〉+

l

∑
⎩
⎨
⎧

=

+ Jli 1 FJ–( ) 1
1 δ+
------------ Xl

0 ↓, Xi
↓ 0,〈 〉

l

∑

+ Vli 1 FV–( ) 2
1 δ+
------------ Xl

0 ↑, Xi
↑ 0,〈 〉

l

∑
⎭
⎬
⎫

× ik Rl R j–( )⋅[ ]exp

εk 2teff
1( ) kxa( )cos kya( )cos+[ ]=

+ 4teff
2( ) kxa( ) kya( )coscos

+ 2teff
3( ) 2kxa( )cos 2kya( )cos+[ ].

teff
1( ) t1 P

1/2 Ft+
1 δ+

-------------------K1+⎝ ⎠
⎛ ⎞=

–
J1 1 FJ–( ) 2V1 1 FV–( )+

2N
------------------------------------------------------------- f k ' kx' a( ),cos

k '

∑

teff
2( ) t2 P

1/2 Ft+
1 δ+

-------------------K2+⎝ ⎠
⎛ ⎞=

–
V2 1 FV–( )

N
-------------------------- f k ' kx' a( ) ky' a( ),coscos

k '

∑

teff
3( ) t3 P

1/2 Ft+
1 δ+

-------------------K3+⎝ ⎠
⎛ ⎞=

–
V3 1 FV–( )

N
-------------------------- f k ' 2kx' a( ),cos

k '

∑

S0
z Sn
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fulfillment of the condition  = (1 – δ)/2 (the sum
rule) is verified. 

It can be seen that the term involved in expression
(10) leads to the appearance of a new Green’s function:

Expression (10) is used to derive the relationship
between the Green’s functions:

(14)

By summing up over the index k and using condition
(8), we obtain 

(15)

where

(16)

Here,  =  =  are the occupation num-

bers,  = {1 + exp[(µ – εk)/kBT]}–1 are the Fermi func-
tions in the hole representation, and µ is the chemical
potential. This representation is more convenient
because the lower Hubbard band of states is completely
occupied for the parent cuprate compound in which
charge carriers are absent. 

Si
+Si

–〈 〉

Dit ω q,( ) 1
N
----– εk q+ εk–( ) Xk q+

0 ↓,
Xk

0 ↓,
S q–

–〈 〉〈 〉 .
k

∑=

Xk q+
0 ↓, Xk

↑ 0, S q–
–〈 | 〉〈 〉 i

2π
------χ0kq 1 Ft–( )πkq[+=

+ J1γ qFJχ0kq ] Sq
+ S q–

–〈 | 〉〈 〉 Dit ω q,( )ζkq.+

Dit ω q,( ) 1
ζ ω q,( )
------------------=

× i
2π
------χ0 ω q,( )– η ω q,( ) Sq

+ S q–
–〈 | 〉〈 〉– ,

η ω q,( ) 1 Ft–( )π ω q,( ) J1γ qFJχ0 ω q,( ),+=

χ0 ω q,( ) 1
N
---- χ0kq,

k

∑=

χ0kq

P f k
h f k q+

h–( )
ω εk εk q+–+
-------------------------------,=

π ω q,( ) 1
N
---- πkq,

k

∑=

πkq

P tk f k
h tk q+ f k q+

h–( )
ω εk εk q+–+

---------------------------------------------,=

ζ ω q,( ) 1
N
---- ζkq,

k

∑=

ζkq
1

ω εk εk q+–+
-------------------------------.=

P f k
h nk

h Xk
0 σ, Xk

σ0〈 〉

f k
h

By differentiating relationship (4) with respect to
time once more, the Fourier transform of the Green’s
function can be represented in the form 

(17)

Here, we have 

(18)

(19)

where

is the square of the frequency of oscillations of local-
ized spins with allowance made for only the three near-
est neighbors. The auxiliary Green’s function involved
in expression (17) is calculated using the aforemen-
tioned rules; that is, 

(20)

The last expression involves the new Green’s function

ω2 Sq
+ S q–
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i
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1
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1
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which can be calculated with the use of formula (14);
that is, 

(21)

By simultaneously solving Eqs. (15), (17), (20), and
(21) with due regard for relationships (18) and (19) and
making simplifications of the type 

(22)

we obtain the following formula for the dynamic spin
susceptibility: 

(23)

where

Let us discuss the specific features of relationship (23).
In the absence of charge carriers, the functions χt(ω, q),
ηt(ω, q), χ0(ω, q), and η(ω, q) vanish and the function
ζ(ω, q) entering into the numerator and denominator of
relationship (23) is canceled. As a result, we have the
expression 

(24)

which corresponds to a two-dimensional antiferromag-
net. This formula coincides with that derived in [3–7,
17], where it is discussed in detail and compared with
the results of cluster calculations. 

Now, we consider the wide band limit. In this case,
the function ζ(ω, q) becomes small, the terms with fac-
tors in square brackets in relationship (23) can be omit-

ted, and the function ωζt(ω, q) is canceled. This leads
to the expression 

(25)

At Ft = 0 and FJ = 1, this expression exactly coincides
with the formula obtained in [8, 10–12]. According to
the terminology accepted in [1], this is the generalized
random-phase approximation formula for the lower
subband. The corresponding formula for the upper
Hubbard subband was derived in [9]. However, it
should be emphasized that, at Ft = 0, expression (25)
does not satisfy the stability condition. In the given
case, the imaginary part of the function at the band
parameters determined from the angle-resolved photo-
emission spectroscopic data according to our calcula-
tions appears to be negative. This justifies the introduc-
tion of the parameter Ft ≠ 0 in order to satisfy the sta-
bility conditions with respect to the spin and charge
susceptibilities. 

Formula (23) has much in common with the expres-
sion obtained in [6] for the susceptibility: 

(26)

It can be seen that this expression does not contain the
susceptibility function χ0(ω, q) characteristic of itiner-
ant electrons. A similar situation occurs for the formu-
las derived in [18]. This is explained by different pro-

1
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jection methods used for deriving the corresponding
relationships. In [6], as in our study, the dispersion law
for quasiparticles was derived using the average value
of the anticommutators as the scalar product. However,
the expression for the spin susceptibility in [6, 18] was
obtained from the Kubo correlation functions. In our
case, the dispersion and the susceptibility function were
determined with the use of the same projection method.
Moreover, in our case, we can generalize formula (23)
to the superconducting phase. At T < Tc , the general
scheme of deriving the relationship for the susceptibil-
ity remains the same; however, the technical calcula-
tions are substantially complicated. They are presented
in Appendix B. 

In closing this section, it should be noted that, when
the aforementioned projection technique is used, the
expression for the charge susceptibility has the form 

(27)

where

The other designations are identical to those for the spin
susceptibility. 

3. COMPARISON WITH INELASTIC
NEUTRON SCATTERING DATA

FOR THE Pr0.88LaCe0.12CuO4 – x 
SUPERCONDUCTOR 

The experimental data obtained by Wilson et al. [14]
are characterized by two pronounced features: (1) the
imaginary part of the spin susceptibility in the super-
conducting state exhibits a sharp peak at low energies
(Fig. 1); and (2) the scattering intensity peak with an
increase in the neutron energy is split, acquires a
V-shaped form in the vicinity of the wave vector Q =
(π, π), and resembles strongly weakened magnon scat-
tering for the parent compound La2CuO4. 

In our calculations, the effective band parameters
were taken according to the experimentally observed

Fermi surface:  = 270 meV,  = –108 meV, and

 = 27 meV. The Hamiltonian parameters, which
were self-consistent when formulas (13) were used,
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were as follows: t1 = 473 meV, t2 = –136.1 meV, t3 =
34.7 meV, and µ = 50 meV. 

The dependence of the screened Coulomb interac-
tion on distance was defined by the relationship V(R) =
(e2/R)exp(–σ0R), where σ0 ≈ 1010 m–1 is the screening
parameter. It should be noted that the results of the cal-
culations are weakly sensitive to possible changes in
the form of the Coulomb pseudopotential. As in [6], the
square of the frequency of localized spins at copper
sites in the absence of charge carriers was taken to be

 = 2 α|K1|(2 – γq)(2∆ + 2 + γq). As a result of the
self-consistent calculations (see Appendix A), we
obtained the spin–spin correlation function for the

nearest neighbors K1 = 4  = –0.4, the decoupling
parameter α = 1.5, and the spin gap parameter ∆ = 5 ×
10–4. For numerical estimates, we used the parameter
J1 = 140 meV (i.e., the same parameter as for the parent
compound La2CuO4) and the dependence of the super-
conducting gap on the wave vector was specified
according to the experimental data (as in [19]):

where ∆1 = 3.9 meV and ∆4 = –2.0 meV. The decou-
pling parameters Ft, FJ, and FV were taken equal to
0.65, 1.00, and 1.00, respectively. These parameters
were consistent with the positivity condition for the
imaginary parts of the spin and charge susceptibilities. 
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Fig. 1. Frequency dependence of the imaginary part of the
susceptibility for the Pr0.88LaCe0.12CuO4 – x superconduc-
tor according to the data taken from [14]. 
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The results of the numerical calculation of the imag-
inary part of the spin susceptibility for the
Pr0.88LaCe0.12CuO4 – x superconductor with the use of
the occupation parameter P = 0.7 at a temperature of
T = 10 K are presented in Fig. 2. It can be seen from this

figure that the imaginary part of the spin susceptibility
at the wave vector Q = (π, π) in the low-frequency range
exhibits a pronounced peak, which is in agreement with
the experimental data [14]. The diverging V-shaped
relief resembles the corresponding relief associated
with the magnon mode for the parent compound
La2CuO4. 

The scaling behavior of the imaginary part of the
spin susceptibility multiplied by the temperature as a
function of the ratio between the frequency and the
temperature in the normal and superconducting phases
according to the calculations at the same parameters is
illustrated in Fig. 3. As in [7], it was assumed that the
damping parameter is proportional to the temperature:
Γ = βT, where β = (1/3) × 10–4 eV/K. 

For comparison, the data taken from [15] are pre-
sented in Fig. 4. It can be seen from this figure that the
results of our calculation reproduce the specific fea-
tures of the frequency–temperature dependence of the
neutron scattering for the Pr0.88LaCe0.12CuO4 – x super-
conductor. 

4. ON THE ORIGIN OF TWO PEAKS
IN NEUTRON SCATTERING

FOR THE La2 – xSrxCuO4 SUPERCONDUCTOR 
AND CONCLUDING REMARKS 

As one more example of the application of the
developed theory, let us analyze new data on neutron
scattering for superconductors of the La2 – xSrxCuO4
type. Recent experiments [20, 21] with the use of the
La1.84Sr0.16CuO4 and La1.90Sr0.10CuO4 compounds dem-
onstrated that the inelastic neutron scattering intensity
is characterized not by one (as was previously believed)
but by two peaks (Fig. 5a). One of them (the low-fre-
quency peak) is most pronounced for the superconduct-
ing phase. For samples corresponding to optimum dop-
ing (x = 0.16), this peak is observed at an energy of
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Fig. 2. Imaginary part of the susceptibility calculated from
relationship (23) as a function of the frequency and the
wave vector qxa (in terms of π) at qy = qx for the
Pr0.88LaCe0.12CuO4 – x superconductor. 
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approximately 18 meV [20]. As was emphasized in
[21], none of the existing theories of spin susceptibility
can explain the simultaneous observation of these
peaks. In this respect, it is of interest to reveal whether
the observed phenomenon can be described using rela-
tionship (23). 

The La2 – xSrxCuO4 compound belongs to the group
of p-type superconductors. The charge carriers are dis-
tributed over oxygen sites. The most simplified initial
Hamiltonian for p-type high-temperature superconduc-
tors has the form [16] 

(28)

Here,  ( ) are the creation (annihilation)
operators for composite quasiparticles in the conduc-

tion band. For example, the operator  can be
approximately written in the form

where  and  are the Hubbard operators corre-
sponding to Cu2+ d holes and O1– p holes, respectively.
Formally, the energy operator (28) can be obtained
from Hamiltonian (1) through the transformation

and the change in the sign of the hopping integral; i.e.,
tij  –tji. It is easy to check that the functions χ0(ω, q)
and ξ(ω, q) in expressions (16) are invariant with
respect to this transformation. However, it should be
emphasized that, upon the given transformation, the
function π(ω, q) in expressions (16) changes sign. In
particular, this function for the La2 – xSrxCuO4 super-
conductors is represented in the form (for brevity, we
write it only for the normal phase)

where fk = {1 + exp[(εk – µ)/kBT]}–1 is the electron
Fermi function and the quantity P is determined by the
value of the anticommutator

With allowance made for these transformations, for-
mula (23) can be used for analyzing magnetic suscepti-
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bility of the La2 – xSrxCuO4 superconductors. In order to
avoid misunderstandings, it should be noted that the
given transformation should be differentiated from the
standard electron–hole transformation within states of
one conduction band. Now, the case in point is the prop-
erties of symmetry between the formulas for the sus-
ceptibilities from different bands, namely, the Hubbard
subbands of the lower and upper types. 

The shape of the Fermi surface was specified
according to the data obtained by Yoshida et al. [22].

The effective hopping integrals were as follows:  =

250 meV,  = –37.5 meV, and  = 18.75 meV. The
results of the numerical calculations of the imaginary
part of the susceptibility for the superconducting phase
are presented in Fig. 5. In the calculations, we used the
following parameters: the superexchange interaction
parameter J1 = 0.13 eV, the damping parameter Γ =
0.003 eV, the gap parameter ∆1 = 0.01 eV in the expres-
sion ∆k = ∆1[cos(kxa) – cos(kya)], K1 = –0.424, K2 =
0.178, K3 = K2, Ft = 0.01, FJ = 0.80, the number of
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Fig. 5. Imaginary parts of the susceptibility for the
La1.84Sr0.16CuO4 superconductor according to (a) the neu-
tron scattering data taken from [20] and (b) the results of the
numerical calculations from relationship (23). 
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charge carriers per unit cell δ = 0.25, P = 0.6250, and
the chemical potential µ = 202.5 meV. 

A comparison of Figs. 5a and 5b demonstrates that
the results of our calculations reproduce the double-
peak structure of the neutron scattering intensity for the
La2 – xSrxCuO4 superconductor. The low-frequency
peak is located within the energy range corresponding
to the superconducting gap. This peak will disappear if
the functions η(ω, q) and ηt(ω, q) in the denominator of
relationship (23) vanish. This corresponds to the
absence of correlations in the motion of itinerant holes.
It is interesting to note that, in this case, the function
ζ(ω, q) located before the frequencies of oscillations of
localized spins blocks their manifestation. The coher-
ence factors in the function ζ(ω, q) are responsible for
the shift in the contribution from the localized oscilla-
tions to the susceptibility toward the high-frequency
range outside the energy gap. In other words, the sus-
ceptibility at low frequencies “freezes.” Therefore, as in
the framework of the random-phase approximation, the
origin of the low-frequency peak can be interpreted as
a manifestation of collective spin oscillations within the
superconducting gap (spin excitons according to the
terminology proposed in [23]). The dispersion of the
high-frequency peak in the vicinity of the wave vector
Q = (π, π) resembles the magnon scattering in the two-
dimensional system of localized spins with strong anti-
ferromagnetic correlations. It should be noted that these
oscillations are significantly renormalized as a result of
coupling with itinerant spins. The relief of the high-fre-
quency peak is similar to the V-shaped relief depicted in
Fig. 1. However, in the case of the La2 – xSrxCuO4 super-
conductor, the position of this peak is considerably
shifted toward the high-frequency range. The factor
responsible for this shift becomes clear taking into
account that the effective radius of charge carriers (oxy-
gen holes correlated with the copper spins in a singlet
manner) is considerably larger than that for the
Pr0.88LaCe0.12CuO4 – x superconductor, in which the
charge carriers are distributed over copper sites. In the
last case, the perturbation of antiferromagnetic correla-
tions is weaker and the spin gap parameter ∆1 is smaller
than that for the La2 – xSrxCuO4 superconductor. 

Thus, the performed analysis demonstrates that the
derived relationship permits us to describe the recently
revealed features of the neutron scattering in the
Pr0.88LaCe0.12CuO4 – x and La2 – xSrxCuO4 superconduc-
tors. It is hoped that the proposed formula for the sus-
ceptibility turns out to be useful for interpreting the data
not only on neutron scattering but also on the magnetic
resonance at different nuclei in high-temperature super-
conductors, as well as for evaluating the efficiency of
the mechanism of pairing of quasiparticles through spin
fluctuations.
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APPENDIX A

SPIN–SPIN CORRELATION FUNCTIONS 

The spin–spin correlation functions are calculated
as follows: 

(A.1)

where Rij = Ri – Rj.
Then, we use the Green’s function 

(A.2)

Since the following equality is satisfied, 

(A.3)

the integration can be carried out only over positive fre-
quencies. With due regard for this circumstance, we
find 

(A.4)

In the general case, the dependence of the correlation
functions (like the exchange integral in the Ruderman–

Si
–S j

+〈 〉 1

N2
------ S q–

– Sq
+〈 〉 iq Rij⋅( ),exp

q

∑=

S q–
– Sq

+〈 〉 ωd

eβω 1–
----------------∫=

× Sq
+ S q–

–〈 | 〉〈 〉ω iε+ Sq
+ S q–

–〈 | 〉〈 〉ω iε––[ ]

=  
N

2πi
-------- ωd

eβω 1–
---------------- χ+ –, q ω, iε+( ) χ+ –, q ω, iε–( )–[ ]∫

=  
N
π
---- ωd

eβω 1–
----------------Imχ+ –, q ω,( ).∫

Imχ+ –, q ω,( ) Imχ+ –, q ω–,( ),–=

Si
–S j

+〈 〉 1
Nπ
------- ωd

eβω 1–
----------------Imχ+ –, q ω,( )

q

∑=

× iq Rij⋅( )exp
1
π
--- a

2π
------⎝ ⎠

⎛ ⎞
2

=

× ωd

eβω 1–
----------------Imχ+ –, q ω,( )∫∫∫

–
ωd

e βω– 1–
------------------Imχ+ –, q –ω,( ) iq Rij⋅( )dqx qydexp

=  
1
π
--- a

2π
------⎝ ⎠

⎛ ⎞
2 βω

2
-------⎝ ⎠

⎛ ⎞ Imχ+ –, q ω,( )coth∫∫∫
× iq Rij⋅( )dω qx qy.ddexp



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 108      No. 1      2009

THEORY OF DYNAMIC SPIN SUSCEPTIBILITY IN TERMS OF THE t–J–V MODEL 65

Kittel–Kasuya–Yoshida interaction) on the distance
exhibits an oscillatory behavior. 

It should be noted that, when the indices of sites
coincide with each other (i = j), the left-hand side of
relationship (A.4) should be represented in the form

rather than 1/2 as in [17]. In order to calculate the inte-
gral over frequencies, according to [17] we can change
over to summation over the Matsubara frequencies ωn =
2nπ/β, where n = 0, ±1, ±2, … are integer numbers. For
this purpose, we use the expansion 

(A.5)

Then, we carry out the term-by-term integration with
the use of the Kramers–Kronig relations. In this case,
the integral of the imaginary part of the susceptibility
over frequencies is expressed through the real part and
the formula takes the form 

(A.6)

The term on the right-hand side with ωn = 0 corresponds
to the high-temperature approximation [24]. Since the
characteristic frequencies in our case can be approxi-
mately 40 meV, i.e., they can be higher than kBTc, the
next terms of the sum should also be taken into account. 

APPENDIX B

DERIVATION OF THE FORMULA AT T < Tc 

Generally speaking, since the mechanism of pairing
remains unknown, the formulation of this problem can
appear to be premature. However, it is possible to ana-
lyze a heuristic variant based on the assumption that the
creation and annihilation operators for quasiparticles in
high-temperature superconductors are Bogoliubov
operators. By writing the energy operator through the
Bogoliubov operators as the initial operator, it only
remains to account for the correction terms propor-
tional to he magnetization. It should be noted that,
within the single-band model, the changeover to
Bogoliubov operators of the composite type does not
violate the commutation relations. 
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In relationships (B.2)–(B.5), the occupation numbers
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By combining these four equations according to
relationship (B.1), we obtain the generalization of
expression (14) to the case of the superconducting
phase; that is, 
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Here, in order to write the above expressions in a more
compact form, we introduced the coherence factors

Formulas (17)–(22) for the superconducting phase
somewhat transform, so that the quantity εk in them
should be formally replaced by the quantity Ek and
functions (16) should be replaced by functions (B.7)–
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account in Eqs. (17)–(21). In this case, the formula for
the spin susceptibility has a form identical to expres-
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in it are determined by relationships (B.7)–(B.9). 
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