Skip to main content
Log in

High temperature equation of state of metallic hydrogen

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm3, which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  2. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  3. W. J. Nellis, A. C. Mitchell, P. C. McCandless, et al., Phys. Rev. Lett. 68, 2937 (1992).

    Article  ADS  Google Scholar 

  4. E. G. Brovman, Yu. Kagan, and A. Holas, Zh. Éksp. Teor. Fiz. 61, 2429 (1971) [Sov. Phys. JETP 34, 1300 (1971)].

    Google Scholar 

  5. P. S. Hawke, T. J. Burgess, D. E. Duerre, et al., Phys. Rev. Lett. 41, 994 (1978).

    Article  ADS  Google Scholar 

  6. S. A. Bonev and N. W. Ashcroft, Phys. Rev. B 64, 224112 (2001).

    Google Scholar 

  7. K. Nagao, S. A. Bonev, and N. W. Ashcroft, Phys. Rev. B 64, 224111 (2001).

    Google Scholar 

  8. V. V. Kechin, Pis’ma Zh. Éksp. Teor. Fiz. 79, 46 (2004) [JETP Lett. 79, 40 (2004)].

    Google Scholar 

  9. E. G. Maksimov and Yu. I. Shilov, Usp. Fiz. Nauk 169, 1223 (1999) [Phys. Usp. 42, 1121 (1999)].

    Article  Google Scholar 

  10. V. T. Shvets, S. V. Savenko, and Ye. K. Malinovskiy, Condens. Matter Phys. 9, 1 (2006).

    Google Scholar 

  11. V. T. Shvets, The Green Function Method in the Metal Theory (Latstar, Odessa, 2002) [in Russian].

    Google Scholar 

  12. E. G. Brovman and Yu. M. Kagan, Usp. Fiz. Nauk 112, 369 (1974) [Sov. Phys. Usp. 17, 125 (1974)].

    Google Scholar 

  13. I. A. Vakarchuk, Introduction to the Many Body Problem (Lvovsk, Nats. Univ., Lviv, 1999) [in Russian].

    Google Scholar 

  14. W. H. Shih and D. Stroud, Phys. Rev. B 31, 3715 (1985).

    Article  ADS  Google Scholar 

  15. P. Lloyd and C. A. Sholl, J. Phys. C 1, 1620 (1968).

    Article  ADS  Google Scholar 

  16. E. G. Brovman and Yu. Kagan, Zh. Éksp. Teor. Fiz. 63, 1937 (1972) [Sov. Phys. JETP 36, 783 (1972)].

    Google Scholar 

  17. E. G. Brovman and A. Holas, Zh. Éksp. Teor. Fiz. 66, 1877 (1974) [Sov. Phys. JETP 39, 924 (1974)].

    Google Scholar 

  18. J. Hammerberg and N. W. Ashcroft, Phys. Rev. B 9, 3999 (1974).

    Article  Google Scholar 

  19. L. Ballentine and V. Heine, Philos. Mag. 9, 617 (1964).

    ADS  Google Scholar 

  20. D. J. M. Geldart and S. H. Vosko, Can. J. Phys. 44, 2137 (1966).

    ADS  Google Scholar 

  21. V. T. Shvets and E. V. Belov, Acta Phys. Pol. A 96, 741 (1999).

    Google Scholar 

  22. V. T. Shvets, Phys. Met. Metallogr. 89, 211 (2000).

    Google Scholar 

  23. I. R. Yukhnovskiĭ and M. F. Golovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.T. Shvets, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 4, pp. 743–749.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvets, V.T. High temperature equation of state of metallic hydrogen. J. Exp. Theor. Phys. 104, 655–660 (2007). https://doi.org/10.1134/S1063776107040164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107040164

PACS numbers

Navigation