Skip to main content
Log in

The Effect of Dustiness of Combustion Products and Coagulation Processes on the Parameters of Submicron Particles Resulting from Coal Burning

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Homogeneous–heterogeneous bulk condensation of potassium sulfate vapor has been numerically simulated in a dusty vapor–gas flow of coal combustion products upon their cooling along a technological path. A closed model that we have proposed for the formation of submicron particles in coal combustion products has been employed. Data have been obtained on the concentration and size distribution of particles formed at varied parameters of heterogeneous condensation sites and rates of variations in the temperature of the flow. Variations in the relative contributions of the homogeneous and heterogeneous mechanisms with variations in flow dustiness have been considered. A criterion enabling one to judge the effect of flow dustiness on the bulk condensation process has been proposed. This criterion takes into account both dust parameters and rate of temperature variations in a condensation zone. Data have been presented on the influence of coagulation processes on the parameters of submicron particles resulting from coal combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Dockery, D.W., Pope, C.A., Xu, X.P., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., and Speizer, F.E., N. Engl. J. Med., 1993, vol. 329, p. 1753.

    Article  CAS  PubMed  Google Scholar 

  2. http://base.garant.ru/71126758/

  3. www.crs.gov

  4. Jin, Y., Andersson, H., and Zhang, S., Int. J. Environ. Res. Publ. Health, 2016, vol. 13, p. 1219.

    Article  CAS  Google Scholar 

  5. Vejahati, F., Xu, Z., and Gupta, R., Fuel, 2010, vol. 89, p. 904.

    Article  CAS  Google Scholar 

  6. Soco, E. and Kalembkiewicz, J., Fuel, 2009, vol. 88, p. 1513.

    Article  CAS  Google Scholar 

  7. Li, J., Zhuang, X., and Querol, X., Fuel, 2011, vol. 90, p. 240.

    Article  CAS  Google Scholar 

  8. Zhang, L. and Ninomiya, Y., Fuel, 2006, vol. 85, p. 194.

    Article  CAS  Google Scholar 

  9. Lockwood, F.C. and Yousif, S., Fuel Process. Technol., 2000, vols. 65—66, p. 439.

    Article  Google Scholar 

  10. Tomeczek, J. and Palugniok, H., Fuel, 2002, vol. 81, p. 1251.

    Article  CAS  Google Scholar 

  11. Gao, Q., Li, S., Yang, M., Biswas, P., and Qiang, Y., Proc. Combust. Inst., 2017, vol. 36, p. 2083.

    Article  CAS  Google Scholar 

  12. Kortsenshteyn, N.M., Lebedeva, L.N., Petrov, L.V., and Samuilov, E.V., Colloid J., 2015, vol. 77, p. 165.

    Article  CAS  Google Scholar 

  13. Kortsenshteyn, N.M. and Petrov, L.V., Thermal Engineering, 2018, vol. 65, p. 435.

  14. Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Widom, B., Adv. Colloid Interface Sci., 1996, vol. 65, p. 71.

    Article  CAS  Google Scholar 

  15. Kuni, F.M., Shchekin, A.K., and Grinin, A.P., Usp. Fiz. Nauk, 2001, vol. 171, p. 345.

    Article  Google Scholar 

  16. Brin’, A.A., Fisenko, S.P., and Shaber, K., Colloid J., 2009, vol. 71, p. 455.

    Article  CAS  Google Scholar 

  17. Chirikhin, A.V., Techenie kondensiruyushchikhsya i zapylennykh sred v soplakh aerodinamicheskikh trub (Flow of Condensing and Dusted Media in Aerodynamic Tube Nozzles), Moscow: Fizmatlit, 2011.

  18. Kortsenshteyn, N.M. and Yastrebov, A.K., Colloid J., 2016, vol. 78, p. 472.

    Article  CAS  Google Scholar 

  19. Sternin, L.E., Osnovy gazodinamiki dvukhfaznykh te-chenii v soplakh (Fundamentals of Gas Dynamics of Two-Phase Flows in Nozzles), Moscow: Mashinostroenie, 1974.

  20. Kashchiev, D., Nucleation. Basic Theory with Applications, Burlington: Butterworth–Heinemann, 2000.

  21. Fuchs, N.A., Evaporation and Droplet Growth in Gaseous Media, New York: Pergamon Press, 1959.

  22. Giesen, A., Kowalik, A., and Roth, P., Phase Transitions, Ser. B, 2004, vol. 77, p. 115.

    CAS  Google Scholar 

  23. Pathak, H., Mullick, K., Shinobu, T., and Wyslouzil, B.E., Aerosol Sci. Technol., 2013, p. 1310.

  24. Kortsenshteyn, N.M. and Petrov, L.V., Colloid J., 2017, vol. 79, p. 333.

    Article  CAS  Google Scholar 

  25. Derevich, I.V., Int. J. Heat Mass Transfer, 2006, vol. 49, p. 4290.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-08-00182a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kortsenshteyn.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kortsenshteyn, N.M., Petrov, L.V. The Effect of Dustiness of Combustion Products and Coagulation Processes on the Parameters of Submicron Particles Resulting from Coal Burning. Colloid J 81, 245–252 (2019). https://doi.org/10.1134/S1061933X19030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19030086

Navigation