Skip to main content
Log in

Set of Multilayer X-Ray Mirrors for a Double-Mirror Monochromator Operating in the Wavelength Range of 0.41–15.5 nm

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A set of multilayer X-ray mirrors for an upgraded version of the double-mirror monochromator installed on the VEPP-5 synchrotron of the Budker Institute of Nuclear Physics is fabricated, its constituent parts are optimized, and its X-ray optical characteristics are studied. Due to the use of seven subbands, for each of which an optimal pair of materials is chosen, the mirror set ensures high reflection coefficients—ranging from 10 to 75%— for a wide range of photon energies from 80 to 3000 eV and wavelengths from 0.413 to 15.48 nm. The principles of optimization of material pairs are reported. For the first time, multilayer mirrors based on the W/Be pair of materials are fabricated and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. G. Gavrilov, A. A. Legkodymov, A. D. Nikolenko, et al., Poverkhnost, No. 1, 129 (2000).

    Google Scholar 

  2. N. I. Chkhalo, M. V. Fedorchenko, N. V. Kovalenko, et al., Nucl. Instrum. Methods Phys. Res. 359, 121 (1995).

    Article  Google Scholar 

  3. E. P. Kruglyakov, A. D. Nikolenko, E. P. Semenov, et al., Poverkhnost, No. 1, 151 (1999).

    Google Scholar 

  4. A. D. Nikolenko, S. A. Avakyan, I. M. Afanas’ev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (3), 388 (2012).

    Article  Google Scholar 

  5. A. D. Akhsakhalyan, E. B. Klyuenkov, A. Ya. Lopatin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (1), 1–19 (2017). https://doi.org/10.1134/S1027451017010049

    Article  Google Scholar 

  6. N. I. Chkhalo, N. N. Salashchenko, and M. V. Zorina, Rev. Sci. Instrum. 86, 016 102 (2015). https://doi.org/10.1063/1.4905336

    Article  Google Scholar 

  7. C. Montcalm, P. A. Kearney, J. M. Slaughter, et al., Appl. Opt. 35 (25), 5134 (1996).

    Article  Google Scholar 

  8. M. M. Barysheva, A. E. Pestov, N. N. Salashchenko, et al., Usp. Fiz. Nauk 182 (7), 727 (2012).

    Article  Google Scholar 

  9. S. Bajt, J. Alameda, T. Barbee, et al., Opt. Eng. 41 (8), 1797 (2002).

    Article  Google Scholar 

  10. A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, et al., Proc. SPIE 6517, 65 170 (2007).

    Article  Google Scholar 

  11. C. Montcalm, S. Bajt, P. B. Mirkarimi, et al., Proc. SPIE 3331, 42 (1998).

    Article  Google Scholar 

  12. B. Sae-Lao, S. Bajt, C. Montcalm, and J. F. Seely, Appl. Opt. 41 (13), 2394 (2002).

    Article  Google Scholar 

  13. D. L. Windt, S. Donguy, J. Seely, et al., Proc. SPIE 5168, 1 (2004).

    Article  Google Scholar 

  14. D. L. Windt and E. M. Gullikson, Appl. Opt. 54 (18), 5850 (2015).

    Article  Google Scholar 

  15. D. Xu, Q. Huang, Y. Wang, et al., Opt. Express 23 (26), 33 018 (2015).

    Article  Google Scholar 

  16. A. F. Jankowski and P. L. Perry, Thin Solid Films 206, 365 (1991).

    Article  Google Scholar 

  17. N. I. Chkhalo, S. Künstner, V. N. Polkovnikov, et al., Appl. Phys. Lett. 102, 011 602 (2013).

    Article  Google Scholar 

  18. D. S. Kuznetsov, A. E. Yakshin, J. M. Sturm, et al., Opt. Lett. 40 (16), 3778 (2015).

    Article  Google Scholar 

  19. A. V. Andreev, Yu. V. Ponomarev, I. R. Prudnikov, and N. N. Salashchenko, Poverkhnost, No. 1, 50 (1999).

    Google Scholar 

  20. M. Wen, Q. Huang, S. Ma, et al., Opt. Express 24 (24), 27 166 (2016).

    Article  Google Scholar 

  21. V. A. Chernov, N. I. Chkhalo, M. V. Fedorchenko, et al., J. X-Ray Sci. Technol. 5, 389 (1995).

    Article  Google Scholar 

  22. N. N. Salashchenko and E. A. Shamov, Opt. Commun. 134, 7 (1997).

    Article  Google Scholar 

  23. N. Ghafoor, P. O. Persson, J. Birch, et al., Appl. Opt. 45 (1), 137 (2006).

    Article  Google Scholar 

  24. Q. Huang, J. Fei, Y. Liu, et al., Opt. Lett. 41 (4), 701 (2016).

    Article  Google Scholar 

  25. D. L. Windt, F. E. Christensen, W. W. Craig, et al., J. Appl. Phys. 88 (1), 460 (2000).

    Article  Google Scholar 

  26. M. S. Bibishkin, N. I. Chkhalo, A. A. Fraerman, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 543, 333 (2005).

    Google Scholar 

  27. S. S. Andreev, M. S. Bibishkin, N. I. Chkhalo, et al., J. Synchrotron Radiat. 10, 358 (2003).

    Article  Google Scholar 

  28. S. A. Bogachev, N. I. Chkhalo, S. V. Kuzin, et al., Appl. Opt. 55 (9), 2126 (2016).

    Article  Google Scholar 

  29. N. Chkhalo, S. Gusev, A. Nechay, et al., Opt. Lett. 42 (24), 5070 (2017).

    Article  Google Scholar 

  30. N. I. Chkhalo, D. E. Pariev, V. N. Polkovnikov, et al., Thin Solid Films 631, 106 (2017).

    Article  Google Scholar 

  31. M. S. Bibishkin, D. P. Chekhonadskih, N. I. Chkhalo, et al., Proc. SPIE 5401, 8 (2004).

    Article  Google Scholar 

  32. M. Svechnikov, D. Pariev, A. Nechay, et al., J. Appl. Crystallogr. 50, 1428 (2017).

    Article  Google Scholar 

  33. L. Névot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

    Article  Google Scholar 

  34. S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, et al., Tech. Phys. 55 (8), 1168 (2010).

    Article  Google Scholar 

  35. I. A. Makhotkin, E. Zoethout, R. van de Kruijs, et al., Opt. Express 21, 29 894 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Works on upgrading the monochromator of the Kosmos station and on fabricating the majority of mirrors were performed using equipment of the Center for Collective Use “Siberian Center of Synchrotron and Terahertz Radiation” based on the VEPP-4 synchrotron of the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, under financial support of the Ministry of Education and Science of the Russian Federation, project unique identification no. RFMEFI62117X0012. In the part of the sputtering of W/Be coatings, the works were performed using equipment of the Center for Collective Use “Physics and Technology of Micro- and Nanostructures” of the Institute of Physics of Microstructures, Russian Academy of Sciences, under financial support of the Russian Science Foundation and the German Research Foundation (RNF–DFG, grant no. 16-42-01034), the Russian Foundation for Basic Research (grant nos. 17-52-150006, 18-02-00588, 18-07-00633, and 18-02-00173), and also within State Assignment no. 0035-2014-0204 for the Institute of Physics of Microstructures, Russian Academy of Sciences, under Programs I.1. Physics of Condensed Matter and New-Generation Materials and I.2. Nanostructures: Physics, Chemistry, Biology, and Basics of Technologies of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Chkhalo.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhsakhalyan, A.A., Vainer, Y.A., Garakhin, S.A. et al. Set of Multilayer X-Ray Mirrors for a Double-Mirror Monochromator Operating in the Wavelength Range of 0.41–15.5 nm. J. Surf. Investig. 13, 1–7 (2019). https://doi.org/10.1134/S1027451019010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019010026

Keywords:

Navigation