Skip to main content
Log in

Phase equilibria and transformations in low-density polyethylene–p-xylene system

  • Investigation Methods
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The state diagram of the low-density polyethylene–p-xylene system that contains the solubility curve of p-xylene in the polymer is first built using the optical method with the involvement of the DSC data. It has been shown that, at 72°C, in a blend with a polymer mass fraction of 0.28, the full amorphization of the polymer proceeds simultaneously with the dissolution of p-xylene in it. Blends with a lower polymer content are also homogenized at the same temperature, although the duration of this process can take several days. In blends with a high polymer content, homogenization occurs at a higher temperature. This process is preceded by the formation of microheterogeneous single-phase gel with network junctions as polymer crystallites and amorphous regions saturated by p-xylene. Cooling of the homogeneous blends to–20°С is not accompanied by the full separation of low- and high-molecular-mass phases; in this case p-xylene not only forms an individual crystalline phase, but also partially crystallizes in amorphous regions of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wunderlich, Macromolecular Physics (Acad. Press, New York, 1980), Vol. 3.

    Google Scholar 

  2. L. Mandelkern, Crystallization of Polymers (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  3. J.-M. Guenet, Polymer—Solvent Molecular Compounds (Elsevier, Amsterdam, 2008).

    Google Scholar 

  4. W. Hu, Polymer Physics: A Molecular Approach (Springer-Verlag, Wien, 2013).

    Book  Google Scholar 

  5. R. M. Barrer, in Diffusion in Polymers, Ed. by J. Crank and G. S. Park (Acad. Press, New York, 1968), p. 165.

  6. L. Rebenfeld, P. J. Makarewicz, H.-D. Weigmann, and G. L. Wilks, J. Macromol. Sci. 15 (2), 279 (1976).

    Article  Google Scholar 

  7. O. V. Stoyanov, A. A. Polyanskii, R. Ya. Deberdeev, and A. Ye. Chalykh, Polym. Sci. USSR, Ser. A 27 (9), 2224 (1985).

    Article  Google Scholar 

  8. M. A. Markevich, V. N. Stogova, and A. Ya. Gorenberg, Polym. Sci. USSR, Ser. A 33 (1), 132 (1991).

    Article  CAS  Google Scholar 

  9. L. I. Kuzub and V. I. Irzhak, Polym. Sci., Ser. A 37 (5), 561 (1995).

    Google Scholar 

  10. N. Lützow, A. Tihminlioglu, R. P. Danner, J. L. Duda, A. De Haan, G. Warnier, and J. M. Zielinski, Polymer 40 (10), 2797 (1999).

    Article  Google Scholar 

  11. L. N. Mizerovskii, K. V. Pochivalov, and V. V. Afanas’eva, Polym. Sci., Ser. A 52 (10), 973 (2010).

    Article  Google Scholar 

  12. K. V. Pochivalov, A. N. Vyalova, R. Yu. Golovanov, and L. N. Mizerovskii, Russ. J. Appl. Chem. 85 (1), 153 (2012).

    Article  CAS  Google Scholar 

  13. L. N. Mizerovskii and K. V. Pochivalov, Fibre Chem. 33 (4), 252 (2001).

    Article  CAS  Google Scholar 

  14. L. N. Mizerovskii and K. V. Pochivalov, Fibre Chem. 41 (3), 147 (2009).

    Article  CAS  Google Scholar 

  15. K. V. Pochivalov, Y. V. Kudryavtsev, A. V. Basko, T. N. Lebedeva, and R. Yu. Golovanov, J. Macromol. Sci., Part B: Phys. 54 (12), 1427 (2015).

    Article  CAS  Google Scholar 

  16. L. N. Mizerovskii, K. V. Pochivalov, Y. V. Kudryavtsev, T. N. Lebedeva, R. Yu. Golovanov, and L. A. Antina, Polym. Sci., Ser. A 57 (4), 399 (2015).

    Article  CAS  Google Scholar 

  17. L. N. Mizerovskii, K. V. Pochivalov, and A. N. Vyalova, Polym. Sci., Ser. A 55 (5), 295 (2013).

    Article  CAS  Google Scholar 

  18. L. N. Mizerovskii, K. V. Pochivalov, T. N. Lebedeva, R. Yu. Golovanov, and L. A. Antina, Polym. Sci., Ser. A 57 (4), 389 (2015).

    Article  CAS  Google Scholar 

  19. L. N. Mizerovskii, K. V. Pochivalov, Y. V. Kudryavtsev, T. N. Lebedeva, R. Yu. Golovanov, and L. A. Antina, J. Macromol. Sci., Part B: Phys. 54 (8), 1001 (2015).

    Article  CAS  Google Scholar 

  20. J. Arnauts and H. Berghmans, Polym. Commun. 28 (3), 66 (1987).

    CAS  Google Scholar 

  21. B. Wunderlich, Thermal Analysis of Polymeric Materials (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  22. R. B. Richards, Trans. Faraday Soc. 42, 10 (1946).

    Article  CAS  Google Scholar 

  23. R. H. Petrucci, J. Chem. Educ. 36 (12), 603 (1959).

    Article  CAS  Google Scholar 

  24. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2015).

    Google Scholar 

  25. R. L. Blaine, http://www.tainstruments.com/pdf/literature/TN048.pdf. Cited 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Pochivalov.

Additional information

Original Russian Text © A.N. Il’yasova, G.A. Shandryuk, Y.V. Kudryavtsev, T.N. Lebedeva, M. Lutovac, K.V. Pochivalov, 2016, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2016, Vol. 58, No. 6, pp. 661–670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’yasova, A.N., Shandryuk, G.A., Kudryavtsev, Y.V. et al. Phase equilibria and transformations in low-density polyethylene–p-xylene system. Polym. Sci. Ser. A 58, 1017–1024 (2016). https://doi.org/10.1134/S0965545X16060092

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16060092

Navigation