Skip to main content
Log in

Polyheptylmethylsiloxane—A Novel Material for Removal of Oxygenates from Water by Pervaporation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A new membrane for the removal of oxygenates from wastewater by pervaporation has been prepared on the basis of polymethylsiloxane bearing 1-heptene as a substituent on the side chain. The synthesized membrane material has been characterized using Fourier-transform IR spectroscopy, and its sorption properties with respect to C2–C4 alcohols have been examined. It has been found that polyheptylmethylsiloxane (PHepMS) has a greater affinity for the C3 and C4 alcohols to be separated than its closest analogue known from the literature (polyoctylmethylsiloxane (POMS)), which makes the PHepMS membrane promising for the pervaporative separation of aqueous solutions of these alcohols. The pervaporation properties of PHepMS have been studied for the first time, and its separation characteristics have been compared with those of the commercial highly permeable membrane polymer polydimethylsiloxane (PDMS) and POMS in relation to the problem of recovery of n-butanol, n-propanol, and ethanol from dilute aqueous solutions by vacuum pervaporation. It has been shown that PDMS has the highest separation efficiency for n-propanol–water mixture and PHepMS is the most promising membrane material for the pervaporative separation of water–butanol mixtures. Having a butanol flux comparable to that through PDMS, the PHepMS membrane demonstrates a record-breaking value of butanol/water separation factor of 97.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. A. Deeb, K. H. Chu, T. Shih, et al., Environ. Eng. Sci. 20, 433 (2003).

    Article  CAS  Google Scholar 

  2. L. C. Davis and L. E. Erickson, Environ. Prog. 23, 243 (2004).

    Article  CAS  Google Scholar 

  3. M. M. Zein, P. X. Pinto, S. Garcia-Blanco, et al., Biodegradation 17, 57 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. G. V. Porutskii, Biochemical Treatment of Wastewater from Organic Productions (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  5. M. J. Tijmensen, A. P. Faaij, C. N. Hamelinck, and M. R. Van Hardeveld, Biomass Bioenergy 23, 129 (2002).

    Article  CAS  Google Scholar 

  6. Mémento Technique de l’Eau, 10th Ed. (Degrémont, Paris, 2005), Vol. 1.

  7. F. Fayolle, J. P. Vandecasteele, and F. Monot, Appl. Microbiol. Biotechnol. 56, 339 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. H. Kölbel and M. Ralek, Catal. Rev. 21, 225 (1980).

    Article  Google Scholar 

  9. A. de Klerk, Fischer–Tropsch Refining (Weinheim, Wiley–VCH, 2012).

    Google Scholar 

  10. A. Yu. Krylova, Yu. G. Kryazhev, M. V. Kulikova, et al., Solid Fuel Chem. 45, 32 (2011).

    Google Scholar 

  11. T. C. Ezeji, N. Qureshi, and H. P. Blaschek, Chem. Rec. 4, 305 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. G. Liu, W. Wei, and W. Jin, ACS Sustain. Chem. Eng. 2, 546 (2013).

    Article  CAS  Google Scholar 

  13. L. M. Vane, J. Chem. Technol. Biotechnol. 80, 603 (2005).

    Article  CAS  Google Scholar 

  14. T. Ikegami, H. Yanagishita, D. Kitamoto, et al., Biotechnol. Tech. 11, 921 (1997).

    Article  CAS  Google Scholar 

  15. A. Rozicka, J. Niemisto, R. L. Keiski, and W. Kujawski, J. Membr. Sci. 453, 108 (2014).

    Article  CAS  Google Scholar 

  16. A. Rom and A. Friedl, Sep. Purif. Technol. 170, 40 (2016).

    Article  CAS  Google Scholar 

  17. I. L. Borisov, N. V. Ushakov, V. V. Volkov, and E. Sh. Finkel’shtein, Pet. Chem. 56, 800 (2016).

    Google Scholar 

  18. J. Schultz and K.-V. Peinemann, J. Membr. Sci. 110, 37 (1996).

    Article  CAS  Google Scholar 

  19. M. Žák, M. Klepic, L. Č. Štastná, et al., Sep. Purif. Technol. 151, 108 (2015).

    Article  CAS  Google Scholar 

  20. I. L. Borisov, A. O. Malakhov, V. S. Khotimsky, et al., J. Membr. Sci. 466, 322 (2014).

    Article  CAS  Google Scholar 

  21. W. Van Hecke and H. de Wever, J. Membr. Sci. 540, 321 (2017).

    Article  CAS  Google Scholar 

  22. J. Börjesson, H. O. E. Karlsson, and G. Trägårdh, J. Membr. Sci. 119, 229 (1996).

    Article  Google Scholar 

  23. S. A. Stern, V. M. Shah, and B. J. Hardy, J. Polym. Sci., Part B: Polym. Phys. 25, 1263 (1987).

    Article  CAS  Google Scholar 

  24. E. A. Grushevenko, I. L. Borisov, D. S. Bakhtin, et al., Pet. Chem. 57, 334 (2017).

    Article  CAS  Google Scholar 

  25. S. Darvishmanesh, J. Degréve, and B. Van der Bruggen, Chem. Eng. Sci. 64, 3914 (2009).

    Article  CAS  Google Scholar 

  26. R. W. Baker, J. G. Wijmans, and Y. Huang, J. Membr. Sci. 348, 346 (2010).

    Article  CAS  Google Scholar 

  27. A. Kujawska, K. Knozowska, J. Kujawa, and W. Kujawski, Sep. Purif. Technol. 159, 68 (2016).

    Article  CAS  Google Scholar 

  28. I. L. Borisov, G. S. Golubev, V. P. Vasilevsky, et al., J. Membr. Sci. 523, 291 (2017).

    Article  CAS  Google Scholar 

  29. S. Darvishmanesh, J. Degreve, and B. Van der Bruggen, Phys. Chem. Chem. Phys. 12, 13333 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. D. W. van Krevelen and K. Nijenhuis, Properties of Polymers, 4th Ed. (Elsevier Science, Amsterdam, 2009).

    Book  Google Scholar 

  31. E. S. Tarleton, J. P. Robinson, and J. J. W. Na, J. Membr. Sci. 261, 129 (2005).

    Article  CAS  Google Scholar 

  32. C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook, 2nd Ed. (CRC, Boca Raton, 2007).

    Book  Google Scholar 

  33. M. Bennett, B. J. Brisdon, R. England, and R. W. Field, J. Membr. Sci. 137, 63 (1997).

    Article  CAS  Google Scholar 

  34. B. Van der Bruggen and P. Luis, Progress in Filtration and Separation, Ed. by E. S. Tarleton (Academic, London, 2015), p. 101.

    Google Scholar 

  35. D. J. O’Brien, L. H. Roth, and A. J. McAloon, J. Membr. Sci. 166, 105 (2000).

    Article  Google Scholar 

  36. L. M. Vane, Sep. Sci. Technol. 48, 429 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-79-20296. The authors are grateful to G.N. Bondarenko for making FTIR measurements and to the Center for Collective Use at the Topchiev Institute for the equipment provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Grushevenko.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grushevenko, E.A., Podtynnikov, I.A., Golubev, G.S. et al. Polyheptylmethylsiloxane—A Novel Material for Removal of Oxygenates from Water by Pervaporation. Pet. Chem. 58, 941–948 (2018). https://doi.org/10.1134/S0965544118110026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118110026

Keywords:

Navigation