Skip to main content
Log in

Simulation of thermobaric conditions of the formation, composition, and structure of mixed hydrates containing xenon and nitrous oxide

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural, dynamic, and thermodynamic features of double hydrates of xenon and nitrous oxide are calculated. Thermodynamic stability regions of these hydrates are found. At the atmospheric pressure the xenon hydrate is in the equilibrium with the gas phase at temperatures up to 263 K, whereas at these pressures the nitrous oxide hydrate decomposes already at 218 K. A strong dependence of the equilibrium temperatures and pressures of the formation/decomposition of double nitrous oxide and xenon hydrates on the composition of their mixture in the gas phase is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3-rd Ed., CRC Press, Boca Raton (2008).

    Google Scholar 

  2. V. A. Istomin and V. S. Yakushev, Gas hydrates under natural conditions [in Russian], Nedra, Moscow (1992).

    Google Scholar 

  3. A. H. Mohammadi and D. Richon, J. Chem. Eng. Data, 54, 279–281 (2009).

    Article  CAS  Google Scholar 

  4. N. E. Burov, D. Dzhabarov, D. Ostapchenko, L. Kornienko, and M. Shulunov, Anesteziol. i Reanimatol., 4, 7–11 (1993).

    Google Scholar 

  5. J. H. Baumert, K. E. Hecker, and M. Hein, Br. J. Anaesth., 95, 166/167 (2005).

    Article  Google Scholar 

  6. T. Goto, T. Matsukawa, D. I. Sessler, S. Uezono, Y. Ishiguro, et al., Anesthesiology, 91, 626–632 (1999).

    Article  CAS  Google Scholar 

  7. N. N. Malinin, O. P. Semenova, V. P. Cmetannikov, and A. N. Orlov, Method to obtain a xenon concentrate from combustible natural gas, products of itsprocessing, including technogenic waste gases and its implementation device (variants), RF Patent No. 2466086. 2011. MKI C01B23, B01D53.

    Google Scholar 

  8. V. R. Belosludov, O. S. Subbotin, D. S. Krupskii, O. V. Prokuda, R. V. Belosludov, and Y. Kawazoe, J. Phys.: Conf. Ser., 29, 1–7 (2006).

    CAS  Google Scholar 

  9. V. R. Belosludov, O. S. Subbotin, D. S. Krupskii, R. V. Belosludov, Y. Kawazoe, and J. Kudoh, Mater. Trans., 48, 704–710 (2007).

    Article  CAS  Google Scholar 

  10. Yu. Yu. Bozhko, O. S. Subbotin, V. M. Fomin, V. R. Belosludov, and Y. Kawazoe, J. Eng. Thermophys., 23, No. 1, 20–26 (2014).

    Article  CAS  Google Scholar 

  11. R. V. Belosludov, Y. Y. Bozhko, O. S. Subbotin, V. R. Belosludov, H. Mizuseki, Y. Kawazoe, and V. M. Fomin, J. Phys. Chem. C, 118, No. 5, 2587–2593 (2014).

    Article  CAS  Google Scholar 

  12. R. V. Belosludov, O. S. Subbotin, H. Mizuseki, Y. Kawazoe, and V. R. Belosludov, J. Chem. Phys., 131, 244510 (2009).

    Article  Google Scholar 

  13. Y. Y. Bozhko, O. S. Subbotin, V. R. Belosludov, and V. M. Fomin, Dokl. Phys. Chem., 445, No. 2, 119–122 (2012).

    Article  CAS  Google Scholar 

  14. R. K. Zhdanov, K. V. Gets, R. V. Belosludov, O. S. Subbotin, Y. Y. Bozhko, and V. R. Belosludov, Fluid Phase Equilib., 434, 87–92 (2017).

    Article  CAS  Google Scholar 

  15. Y. Y. Bozhko, O. S. Subbotin, V. M. Fomin, V. R. Belosludov, and Y. Kawazoe, J. Eng. Thermophys., 23, No. 1, 9–19 (2014).

    Article  CAS  Google Scholar 

  16. F. M. Mourits and F. H. A. Rummens, Can. J. Chem., 55, No. 16, 3007 (1977).

    Article  CAS  Google Scholar 

  17. S. Sh. Byk and V. I. Fomina, Uspekhi Khimii, 37, 1097–1131 (1968).

    CAS  Google Scholar 

  18. H. Tanaka, Chem. Phys. Lett., 202, No. 5, 345–349 (1993).

    Article  CAS  Google Scholar 

  19. T. Sugahara, A. Kawazoe, K. Sugahara, and K. Ohgaki, J. Chem. Eng. Data, 54, No. 8, 2301–2303 (2009).

    Article  CAS  Google Scholar 

  20. S. V. Adichtchev, V. R. Belosludov, A. V. Ildyakov, V. K. Malinovsky, A. Yu. Manakov, O. S. Subbotin, and N. V. Surovtsev, J. Phys. Chem. B, 117, No. 36, 10686–10690 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Bozhko.

Additional information

Original Russian Text © 2017 Yu. Yu. Bozhko, O. S. Subbotin, K. V. Gets, R. K. Zhdanov, V. R. Belosludov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 58, No. 5, pp. 891–898, June–July, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhko, Y.Y., Subbotin, O.S., Gets, K.V. et al. Simulation of thermobaric conditions of the formation, composition, and structure of mixed hydrates containing xenon and nitrous oxide. J Struct Chem 58, 853–860 (2017). https://doi.org/10.1134/S0022476617050018

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617050018

Keywords

Navigation