Skip to main content
Log in

Dispersion of the conductance of quantum nanowires and Joule heating

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The high-frequency ballistic conductance G(ω) of a quantum wire connecting two classical reservoirs is discussed. It is supposed that the transverse size of the wire is on the order of the de Broglie wavelength of the conduction electrons. An expression for G(ω) in a wide range of frequencies ω is given. The behavior of both active ReG(ω) and reactive ImG(ω) parts of the conductance is investigated. The frequency range is determined where the so-called kinetic inductance is dominant, i.e., ImG(ω) is positive and larger than ReG(ω). This range is defined by the condition that the time of flight of the conduction electrons along the wire length L exceeds the period of oscillation 2π/ω of the electric potential. The Joule heat generation that accompanies the current flow through the quantum wire takes place in the reservoirs over a distance on the order of the mean free path of conduction electrons. The total rates of Joule heat generation are the same in both reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Landauer, IBM J. Res. Develop. 1, 233 (1957); IBM J. Res. Develop. 32, 306 (1989).

    Article  MathSciNet  Google Scholar 

  2. Y. Imry, in Directions in Condensed Matter Physics, Ed. by G. Grinstein and G. Mazenko (World Scientific, Singapore, 1986), p. 101.

    Google Scholar 

  3. L. I. Glazman, G. B. Lesovik, D. E. Khmel’nitskii, and R. I. Shekhter, JETP Lett. 48, 238 (1988).

    ADS  Google Scholar 

  4. V. L. Gurevich, V. I. Kozub, and M. I. Muradov, J. Phys.: Condens. Matter 22, 025304 (2010).

    Article  ADS  Google Scholar 

  5. V. A. Sablikov and B. S. Shchamkhalova, JETP Lett. 67, 210 (1998); V. A. Sablikov and B. S. Shchamkhalova, Phys. Rev. B 58, 13847 (1998).

    Article  Google Scholar 

  6. Ya. M. Blanter and M. Büttiker, Europhys. Lett. 42, 535 (1998).

    Article  ADS  Google Scholar 

  7. V. L. Gurevich, V. I. Kozub, and M. I. Muradov, J. Phys.: Condens. Matter 23, 405302 (2011).

    Article  Google Scholar 

  8. V. L. Gurevich and M. I. Muradov, Phys. Solid State 54, 663 (2012).

    Article  ADS  Google Scholar 

  9. I. O. Kulik, R. I. Shekhter, and A. N. Omelyanchouk, Solid State Commun. 23, 301 (1977).

    Article  ADS  Google Scholar 

  10. V. L. Gurevich and V. I. Kozub, J. Phys.: Condens. Matter 23, 245303 (2011).

    Article  ADS  Google Scholar 

  11. S. Tomonaga, Progr. Theor. Phys. 5, 544 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  13. V. V. Afonin and V. Yu. Petrov, J. Exp. Theor. Phys. 107, 542 (2008).

    Article  ADS  Google Scholar 

  14. M. I. Muradov and V. L. Gurevich, J. Phys.: Condens. Matter 24, 135304 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.L. Gurevich, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 96, No. 9, pp. 674–678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurevich, V.L. Dispersion of the conductance of quantum nanowires and Joule heating. Jetp Lett. 96, 604–608 (2013). https://doi.org/10.1134/S0021364012210059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012210059

Keywords

Navigation