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Abstract—Measurements of pressure swings in the esopha
(Pes) can be used to estimate variables of clinical importan
e.g., intrinsic positive end-expiratory pressure (PEEPi). Unfor-
tunately, cardiogenic oscillations frequently corruptPes and
complicate further analysis. Due to significant band over
with the respiratory component ofPes, cardiogenic oscillations
cannot be suppressed adequately using standard filtering
niques. In this article, we present an adaptive filter that e
ploys the electrocardiogram to identify and suppress the
diogenic oscillations. This filter was tested using simula
data, where the variance accounted for relative to the simul
respiratory pressure swings increased from as low as 55%
the unfilteredPes signal to over 95% when the adaptive filte
was used. In patient data, the adaptive filter reduced the ap
ent cardiogenic oscillations without noticeably distorting t
sharp deflections inPes due to respiration. Furthermore, th
filter suppressed peaks in the Fourier transform ofPes at integer
multiples of the heart rate, while the remaining frequenc
remained largely unchanged. During stable breathing, the s
dard deviation of PEEPi was reduced by between 44% an
71% in these four patients when the filter was used. We c
clude that our filter removes a significant fraction of the c
diogenic oscillations that corrupt records ofPes. © 1998 Bio-
medical Engineering Society.@S0090-6964~98!00102-7#

Keywords—Pulmonary monitoring, Intrinsic PEEP, Work o
breathing.

INTRODUCTION

Respiratory pressure swings in the esophagus (Pes)
can be measured using an esophageal balloon,
a small elastic balloon attached to the end of a sm
plastic catheter placed in the mid-thoracic section of
esophagus. Provided that the esophageal balloon
adequately placed and inflated, swings inPes reflect
swings in pleural pressure (Ppl) during spontaneous
breathing.1,2,5,6Measurements ofPes can be used to sepa
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rate estimates of respiratory mechanics into lung a
chest wall compartments,4,8 to evaluate variables of clini-
cal importance such as dynamic intrinsic PEE
(PEEPi ,dyn) and inspiratory work of breathing
(Winsp),

3,7,13,16 and to estimate the patient’s muscul
and/or neural drive.11,12

Since the esophageal balloon is placed in close pr
imity to the heart,Pes recordings often contain cardio
genic oscillations. These are components ofPes that are
not directly related to respiration, but originate fro
pressure changes within the pericardium and the a
that are communicated to the esophageal balloon. C
diogenic oscillations can be large enough to significan
complicate processing of thePes signal. For example, we
have recently demonstrated in a computer simulation
cardiogenic oscillations onPes may introduce substantia
errors to estimates of PEEPi ,dyn and Winsp.14 Similarly,
cardiogenic oscillations reduce the goodness of mo
fits when the mechanical properties of the lungs a
chest wall are identified usingPes. Unfortunately, car-
diogenic oscillations cannot be removed fromPes signals
by simple low pass filtering because their frequency c
tent overlaps that of the respiratory signal.

We have recently presented an adaptive filter t
reduces the effects of cardiogenic oscillations on eso
ageal pressure.15 In this article, we further develop this
filter and validate its performance using both simulat
data and records obtained from four patients in a res
ratory intensive care unit~ICU!. Finally, we demonstrate
the effects of the adaptive filter on estimates of PEEPi ,dyn

in these patients.

METHODS

The Adaptive Filter

In order to develop the adaptive filter presented in t
study, we modelPes as the sum of pressure swings d
to respiration (Presp) and the undesired cardiogenic o
cillation pressure (PCGO), as illustrated in Fig. 1~a!. The
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261Adaptive Filter for Cardiogenic Oscillations
linear dynamic system described by the impulse respo
function h1(t) relates PCGO to the series of impulse
generated by the cardiac pacemaker in the sinoatrial~SA!
node (CP). PCGO contains very little power at frequen
cies below the heart rate~HR!, while Presp is likely to
contain significant power below the HR because the r
piratory rate~RR! is generally less than the HR. Ther
fore, Pes can be considered to be entirely determined
Presp in the frequency band from 0 Hz to slightly belo
the HR, but to contain significant cardiogenic oscillatio
at and above the HR. A second impulse response,h2(t),
translatesCP into voltage swings on the body surfac
that can be measured as an electrocardiogram~EKG!.

In our adaptive filter, a number of quantities a
smoothed by recursively calculating an exponentia
weighted running mean according to

x̄k5a x̄k211~12a!xk , ~1!

where x̄k is the estimate of the mean obtained up
samplek. a is often referred to as a forgetting facto
and must range between 0 and 1. Ifx is sampled uni-
formly, this estimator becomes equivalent to a sing
pole low-pass filter, anda is related to the time constan
of the finite memory,t, by the equation

t52
Dt

ln~a!
, ~2!

where Dt is the sampling interval. Ifa is adequately
chosen, this recursive estimator will track slow chang

FIGURE 1. „a… Model of the origin of cardiogenic oscillations
employed to develop the adaptive filter. „b… Structure of the
adaptive filter.
e

in x but average out rapid fluctuations and measurem
noise.

Our adaptive filter is an adaptive noise cancelle19

with the structure shown in Fig. 1~b!. In order to com-
pute an estimate ofPCGO ( P̂CGO), we first generated a
sequence of impulses representing the cardiacR-waves
from a lead II EKG by thresholding the negative defle
tions of the EKG. The threshold value for theR-wave
detection was set to 1.7 times the rms value of the E
signal, which was smoothed recursively as describ
above with a forgetting factor of 0.97. Provided th
h2(t) is stationary, this sequence of impulses represe
an estimate ofCP , i.e.,

ĈP'CP~ t2t2!, ~3!

where t2 is the delay between the initiation of a hea
beat in the SA node and its manifestation in the EK
The HR was computed from the inverseR–R intervals
and smoothed recursively using a forgetting factor of 0

Next, we high-pass filteredPes using a two-sided
256th-order finite impulse response~FIR! filter with a
constant group delay. The cutoff frequency (f C) of this
filter was adjusted to 0.6 times the identified HR. Thu
the high-pass filteredPes signal (Pes,HP) still contained
the complete and undistortedPCGO, but suppressed the
low frequency components ofPresp that might complicate
the following processing steps. The two sided high-p
filter introduced a delay of 128 data points from th
moment that data were sampled to the point when
tered values were available. Since all data were samp
at 100 Hz, the time delay amounted to 1.28 s.

Assuming linearity, we have that

PCGO5h1~t2t2!* ĈP , ~4!

where* denotes convolution. In order to calculateP̂CGO,
we recursively estimated a third impulse respon
h3(t), according to

h3
~k11!~t !5ah3

~k!~t !1~a21!Pes,HP
~k! ~ t !, ~5!

wherea again is the forgetting factor, andPes,HP
(k) is the

segment ofPes,HP that falls into thekth R–R interval.
Assuming that there is no phase-locking between
heart rate and the breathing cycle, and provided thata is
sufficiently large, components ofh3(t) that originate
from Presp are averaged out so thath3(t) effectively
provides an estimate ofh1(t2t2). Using h3(t), we
computedP̂CGO and subtracted it fromPes in order to
obtain the final estimate ofPresp, i.e.,

P̂resp5Pes2 P̂CGO5Pes2h3~t!* ĈP . ~6!
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262 SCHUESSLERet al.
The choice of the forgetting factora in Eq. ~5! is a
crucial determinant of the algorithm’s performance. Ifa
is too small thenh3(t) becomes sensitive to measur
ment noise, and contributions toPes,HP that originate
from Presp are not efficiently averaged out. On the oth
hand, large values ofa limit the filter’s ability to adapt
to changes inh1(t) over time. Part of this problem ca
be overcome by using the adaptive scheme of Wellst
and Sanoff18 to updatea at each iteration. Briefly, this
scheme recursively tracks the residuals with a fin
memory. When the residuals are persistently large
change in the underlying dynamics is assumed anda is
decreased. Conversely,a is increased to reduce the se
sitivity to measurement noise in the case of consiste
small residuals. This scheme has been applied succ
fully to fit models of respiratory mechanics to pressu
and flow data.10

While the scheme of Wellstead and Sanoff altersa
appropriately in the case of changing underlying dyna
ics, it fails in the presence of increased band overl
i.e., when the frequency content ofPCGO increasingly
overlaps that ofPresp. Band overlap also increases th
variability betweenP̂CGO and Pes,HP, but requires an
increase in rather than a reduction ofa in order to
properly average out the contributions ofPresp in Eq. ~5!.
We are thus faced with conflicting possibilities whe
P̂CGO and Pes,HP do not match well: it may be that th
underlying dynamics are varying in which casea should
be decreased, or it may be due to band overlap in wh
case a should be increased. However, somea priori
information to estimate the prominence of band over
can be obtained from the relative values of the HR a
the RR. We developed a modified scheme to adaptiv
updatea at each intervalk that encapsulates thisa priori
information. We start with an expression similar to t
scheme by Wellstead and Sanoff, i.e.,

ak512
Dk

11Dk
. ~7!

However,D in this case is a function of the residuals, t
heart rate, and the respiratory rate that is recursiv
updated according to

Dk5gDk211~12g!
iPes,HP

~k! 2h3
~k!i

ih3
~k!i

3exp~k1
21HR/RR1k3!, ~8!

where g is another forgetting factor, andi.i denotes a
quadratic norm. The exponential term in Eq.~8! was
chosen empirically on the basis of preliminary compu
simulations and effectively determines the range o
which the scheme can modifya. When the HR is close
s-

to the RR, the exponential term in Eq.~8! is small. This
in turn causesDk to remain small, so thatak in Eq. ~7!
is close to unity, biasing the algorithm towards lon
memory. The effects of band overlap can thus be av
aged out. Conversely, as the HR becomes much gre
than the RR, the exponential term in Eq.~8! increases.
This allowsDk to be large and the memory to be sho
when Pes,HP consistently differs significantly fromh3 .
The filter can then adapt rapidly to changes inPCGO.
The constants in Eq.~8! were set tog50.8,k150.5, and
k2525. Small changes in these parameters hardly
fected the overall outcome, indicating that this scheme
robust towards slight misadjustments ofg, k1 , and k2 .
The RR was computed from the intervals between
onset of inspiratory flow and smoothed recursively w
a forgetting factor of 0.6.

Computer Simulations

To test our adaptive filter, we simulatedPes signals
contaminated with cardiogenic oscillations using a no
linear, viscoelastic model of a spontaneously breath
patient. This model has previously been used to evalu
the effect of cardiogenic oscillations on PEEPi .14 In or-
der to introduce a physiologically reasonable variabil
in PCGO over time, we extended this model by makin
the magnitude ofPCGO depend on volume according to

PCGO5k1 expS k2

FRC2V~ t !

FRC D P̃CGO. ~9!

Here, FRC is the functional residual capacity,V(t) is the
absolute lung volume at any point in time, andP̃CGO is
the preliminary, volume independent cardiogenic oscil
tion wave form. The constantsk1 andk2 were chosen to
be 10 cm H2O and 5, respectively. This functional form
of the volume dependence was chosen arbitrarily to
produce physiologically reasonable magnitudes ofPCGO.

We simulated eight patients with the RRs and H
shown in Table 1. These values were chosen to prod
degrees of band overlap spanning the range likely to
observed in real patients. The inspiratory drive was
justed to produce normal minute ventilations between
and 7.2 L/min, and expiratory muscle activity was abs
in all eight simulated patients. All other model param
eters were chosen equal to the population means liste
Table 1 of Ref. 14. Patients 1–4 had very rapid shall
breathing patterns with a RR of 40 breaths/min. T
simulations were designed such that band overlap
most pronounced in patient 1, where the HR with 54
bpm was only 37% higher than the RR. In contra
patients 5–8 breathed deeply with a RR of 10 breat
min. In these patients, band overlap was less promin
but the effects of the volume dependence ofPCGO be-
came more important due to the larger tidal volum
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TABLE 1. Variance accounted for using the filtered and unfiltered Pes in eight simulated
patients.

Simulated patient 1 2 3 4 5 6 7 8

Heart rate 54.7 74.7 139.3 199.3 54.7 74.7 139.3 199.3 min21

Respiratory rate 40 40 40 40 10 10 10 10 min21

VAFa unfiltered 57.9 54.5 64.5 76.2 90.2 89.4 91.7 94.4 %
VAF filtered 95.4 97.7 97.8 97.9 98.5 98.7 98.9 99.4 %

aVariance accounted for.
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Three min of data were simulated for each patient, a
the first 2 min of data were discarded in order to ens
that the steady state of the simulation had been reac
and to allow the filter to adapt. From the last minute
data, we evaluated the VAF by bothPes and P̂resp with
respect to the truePresp in order to quantify the reduction
of the cardiogenic oscillation achieved by our adapt
filter.

Patient Data

We also applied our adaptive filter to recordings
Pes, flow and EKG that had been obtained from fo
patients receiving ventilatory support in the ICU of th
Montreal Chest Hospital. Each data collection proto
was approved by the local ethics committee, and
formed consent was obtained from all subjects. All s
nals were amplified and anti-aliasing filtered at 30
using 6th order Bessel low-pass filters and digitized a
sampling rate of 100 Hz. The correct position of t
esophageal balloon was verified prior to data collect
by a standard occlusion test.1 Table 2 summarizes th
characteristics of each patient.

From each patient record, we chose a data segm
for further analysis that~i! started a minimum of 60 s
after the beginning of data collection to permit time f
the filter to adapt,~ii ! showed a relatively stable breath
ing pattern over a period of at least 10 breaths, and~iii !
did not contain any esophageal spasms or EKG artifa
For each analysis segment, we computed the magni
,

t

.
e

of the 2048-point Fourier transform~FT! of both the
unfiltered and the filteredPes using a Hamming window
with 50% overlap. Using the same segments, PEEPi ,dyn

was estimated automatically for each breath as the
flection in Pes from its end-expiratory plateau valu
(Pes,plateau) to the onset of inspiratory flow. PEEPi ,dyn

was corrected for the trigger threshold of the ventila
by subtracting the deflection in airway opening press
that occurred simultaneously with the deflection inPes.
Pes,plateauwas detected as the point closest to the onse
inspiratory flow at which the five-point derivative ofPes

was within 0.1% of its minimum value over the prece
ing expiration. The onset of inspiratory flow was iden
fied by extrapolating backwards to zero flow from th
points at which inspiratory flow amounted to 50 and 1
mL/s. This procedure was carried out using both t
unfiltered and the filteredPes, and the mean and stan
dard deviation of PEEPi ,dyn were computed in each cas

All simulations and data analysis were carried o
using theMATLAB 4.2/SIMULINK 1.3 mathematical soft-
ware package~The Mathworks, Nattick, MA!.

RESULTS

Simulated Data

Figure 2 shows samples of the simulatedPrespandPes

and the resultingP̂resp traces for simulated patients
~top! and 8 ~bottom!. In both patients, the unfilteredPes

~center panels! differs significantly from the simulated
TABLE 2. Patient characteristics.

Patient Sex Age Diagnosis Ventilator mode Heart rate
Respiratory

rate

A male 6 COPD/Pneumonia CPAPb 5 cm H2O 126 min21 22 min21

B female 57 COPDa
PAVc1PEEPe 3 cm H2O 104 min21 15 min21

C male 64 COPDa
PAVd1PEEPe 4 cm H2O 87 min21 32 min21

D female 69 COPDa PSVd 12 cm H2O
1PEEPe 5 cm H2O

106 min21 4.7 min21

aChronic obstructive pulmonary disease.
bConstant positive airway pressure.
cProportional assist ventilation.
dPressure support ventilation.
e(Applied) Positive end-expiratory pressure.
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264 SCHUESSLERet al.
Presp ~left panels!. In patient 1 where band overlap was
most pronounced, the effects of the cardiogenic oscill
tions were suppressed to a large extent, but not entire
in the filteredPes signal ~top right panel!. In the filtered
Pes trace of patient 8 where volume dependence w
more pronounced~bottom right panel!, most of the car-
diogenic oscillations were suppressed.

The VAFs for bothPes and P̂resp are shown in the
bottom two rows of Table 1. When the RR was 1
breaths/min,Pes accounted for around 89% to 94% o
the variance ofPresp. This number dropped as low as
55% when the RR was raised to 40 breaths/min and ba
overlap became more prominent.P̂resp produced a sub-
stantially greater VAF in all eight cases, with a minimum
of 98.5% at a RR of 10 and a minimum of 95.4% at
RR of 40.

Patient Data

Figure 3 shows samples of the unfiltered~dashed
lines! and filtered~solid lines! Pes for each of the four
ICU patients studied. In all four graphs, the filteredPes

trace was shifted downward by 5 cm H2O to separate the
graphs. Except for patient C, the data shown in Fig. 3 l
completely within the segments used to compute th
power spectrum and to estimate PEEPi . For patient C,
the analysis segment ended att5290 s, when the patient
was switched from proportional assist ventilation to pre

FIGURE 2. Simulated data for simulated patients 1 „top … and
8 „bottom …. The filtered Pes traces „right panels … reproduce
the simulated Presp traces „left panels … with much greater
accuracy than the unfiltered Pes traces „center panels ….
sure support ventilation. At this point, the RR of patien
C dropped from 32 breaths/min to 8.3 breaths/min. Fi
ure 3 shows this transition to illustrate the performanc
of our adaptive filter over a change in ventilatory cond
tions. Patient D had a large tidal volume at a very lo
RR of 4.7 and showed abnormal positive deflections
Pes. Analysis of concurrently recorded airway pressur
and flow traces suggested that these were bursts of
piratory muscle recruitment.

In Fig. 4, the magnitudes of the FT of the unfiltere
~dashed lines! and filtered~solid lines! Pes signals of all
four patients are plotted against the frequency norm
ized to the heart rate. Thus, on the abscissa of each p
the heart rate occurs at a value of one and its harmon
occur at integer values greater than one. In all cases,

FIGURE 3. Sample traces from the four patients studied.
Dashed lines: Unfiltered Pes signals. „Solid lines … Adaptively
filtered Pes signal „shifted downward by 5 cm H 2O to sepa-
rate the curves …. „Patient A … COPD/pneumonia patient on
continuous positive airway pressure „CPAP… of 5 cm H 2O.
„Patient B … COPD patient on proportional assist ventilation
„PAV…. „Patient C … COPD patient on PAV with a very high
respiratory rate of 32 breaths/min. At t 5290 s, this patient
was switched to pressure support ventilation „PSV…, causing
the respiratory rate to instantaneously drop to 8 breaths/min.
„Patient D … COPD patient on PSV with a very low respiratory
rate of 4.7 breaths/min. This patient showed an abnormal
recruitment of the expiratory muscles.
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FIGURE 4. Magnitude of the Fourier transform of both the unfiltered „dashed lines … and filtered „solid lines … esophageal
pressure traces for all four patients, plotted against the frequency normalized to the heart rate. The Fourier transform was
computed using a moving 2048-point Hamming window with 50% overlap. The filter removed transients in the Fourier transform
at the heart rate and its harmonics „at integer values on the abscissa ….
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FT of the unfilteredPes signal showed spikes at the hea
rate and its harmonics that did not occur in the FT of
filtered Pes signal.

The mean and standard deviation of PEEPi ,dyn for
each patient are shown in Table 3. The standard de
tion of PEEPi ,dyn was less for the filtered than for th
unfilteredPes signal in all patients. The mean PEEPi ,dyn

dropped in three patients and increased in one pat
when the filteredPes signal was used.

DISCUSSION

In the present study, we have described in detail
adaptive filter to suppress the cardiogenic oscillatio
that complicate the processing ofPes signals. We tested
this filter in eight simulated patients with a wide range
-

t

heart and respiratory rates. In all eight cases,P̂resp repro-
duced thePresp with substantially greater accuracy tha
the unfilteredPes. The VAF of P̂respwith respect toPresp

was lowest in simulated patient 1 where band over
was most pronounced, but exceeded 95% in all simula
patients.

We also tested the adaptive filter in four patients
ceiving mechanical ventilatory support in the ICU. Th
performance of the adaptive filter is more difficult
evaluate in patients becausePresp is unknown and canno
be used as a reference. However, our adaptive filter
ways reduced the apparent cardiogenic oscillations w
out noticeably distorting the sharp deflections due
respiration ~Fig. 3!. In the Fourier domain, the filte
suppressed transients at integer multiples of the heart
TABLE 3. Intrinsic PEEP obtained from the unfiltered and the filtered esophageal pressure
signal „mean6standard deviation ….

Patient Length of analyzed data segment PEEPi,dyn
a (unfiltered Pes) PEEPi,dyn

a (filtered Pes)

A 100 s (36 breaths) 0.5461.06 cm H2O 0.1860.31 cm H2O
B 100 s (25 breaths) 1.5461.59 cm H2O 1.1160.57 cm H2O
C 50 s (24 breaths) 2.0661.11 cm H2O 1.0660.56 cm H2O
D 120 s (10 breaths) 2.5661.64 cm H2O 3.7660.92 cm H2O

aDynamic intrinsic positive end-expiratory pressure.
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266 SCHUESSLERet al.
that presumably represent the harmonics ofPCGO. Oth-
erwise, the FT of the filteredPes signal closely re-
sembled the FT of the unfilteredPes signal. These results
indicate that our adaptive filter adequately reduces
cardiogenic oscillations inPes without unduly distorting
the respiratory pressure swings.

Finally, we applied our adaptive filter to the compu
erized estimation of PEEPi ,dyn using our previously de-
scribed algorithm.14 The mean PEEPi ,dyn was reduced in
three patients and increased in one patient. However,
standard deviation of PEEPi ,dyn was reduced by 44% to
71% ~mean 57%! in all four patients when the filtered
Pes was used. This suggests, as one would expect,
part of the variability of the PEEPi ,dyn obtained from the
unfiltered Pes was not due to variability in the patient’
breathing pattern, but rather to the cardiogenic osci
tions. As it is improbable that the patients were perfec
stable over the analysis period, it seems likely that p
of the remaining variability must have been physiolog

To develop our adaptive filter, we assumedPes to
represent the sum of two independent and uncorrela
pressure signals, namelyPresp and PCGO. Clearly, this is
not a precise account of events. First, the coupling
tween the heart and the esophageal balloon is likely to
volume dependent. This would causePCGO to be en-
trained with respiration in patients with large tidal vo
umes. However, we found our filter to perform well
our computer simulations even when the simulatedPCGO

was markedly volume dependent~simulated patients 5–
8!. The filter also performed well in patient D where th
amplitude of the cardiogenic oscillations appeared to
crease during expiration as lung volume decreased.

Second, since the beating heart is located within
thoracic cavity, cardiac pressure swings are not o
communicated directly to the esophageal balloon,
also contribute to the pleural pressure swings. Depend
on the application, this indirect contribution of the hea
to Pes may be considered part of the respiratory press
swings because it contributes to the transpulmonary p
sure and hence influences flow. Alternatively, it may
considered artifactual because it does not originate fr
the respiratory musculature. In any case, this indir
contribution of the heart is likely to contribute much le
to the cardiogenic oscillations onPes than the direct
coupling from the heart to the esophageal balloon.

The identification of the transfer functionh3(t)
would, in general, require the utilization of time-doma
system identification techniques9,17 betweenPes and ĈP .
However, the input signal toh3 is reduced to a single
impulse function when eachR–R interval is processed
independently. Provided that the delay between a car
event and its manifestation inPes is much shorter than
the duration of anR–R interval, the segment ofPes that
corresponds to theR–R interval constitutes the impuls
e

t

-

response, obliterating the need for computationally
pensive deconvolution.

In summary, we have described an adaptive filter t
reduces the cardiogenic oscillations on esophageal p
sure traces. We have validated its performance in a c
puter simulation, and we have shown its effect in bo
the time and the frequency domain on data obtain
from four ICU patients. Furthermore, we found the sta
dard deviation of breath-by-breath estimates
PEEPi ,dyn, obtained from periods with seemingly stab
breathing patterns, to be substantially reduced when
adaptive filter was used.
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