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Abstract—In this paper, subband wavelet entrof§WE) is in structural complexity of these rhythm Determina-
used for the segmentation of electroencephalographic signalsijon of relative changes in the subband entropy of each

(EEG) recorded during injury and recovery following global . _ . .
cerebral ischemia. Wavelet analysis is used to decompose themd'V'du‘ﬁ’lI EEG frequency band would, therefore, be a

EEG into standard clinical subbands followed by computation clinically sig_nifif:ant problem. o .
of the Shannon entropy. The EEG was measured from rodent ~The monitoring of cerebral injury presently involves

brains in a controlled experimental brain injury model by eyeballing long stretches of EEG. Previous research in
hypoxic-ischemic cardiac arrest. Results show that while the this direction was mostly carried out using signatures of

relative EEG power failed to reveal the order of bursting ac-
tivity associated with recovery, SWE was used to segment the power and frequenCrS/.One of the recent approaches to

EEG and delineate the initial bursting periods in each subband. Ségmentation of EEG based on power and frequency
Based on entropy variations obtained from a cohort of animals Uses a nonlinear energy operatérin this method, the
with graded levels of hypoxic-ischemic cardiac arrest, an inter- segmentation is performed in time domain and describes
mittent pattern of bursting was observed in the high frequency the dual variations in power and frequency over time.
bands. ©2003 Biomedical Engineering Society. However, in situations where segmentation has to be
[DOI: 10.1114/1.1575797 . .
performed in each frequency band, the above technique
cannot be applied. For example, in models related to
brain injury, it has been shown that the recovery of brain
INTRODUCTION rhythms occurs in a highly selective fashion. The low
frequency bands have been shown to recover faster than

The electroencephalogragfEEG) is a potential tool the higher frequency banddn this situation, it becomes
for the identification of cerebral injury and management important to monitor and quantify the variations within
of patients with neurological trauma in critical care units. €ach clinical frequency band. Further, segmentation of
EEG studies of cerebrovascular disease have mainly fo-EEG within each band helps to understand their relative
cused on the determinants of cerebral ischefhfa?3A role during recovery and may be used to predict the
sensitive and reliable way to study the effects of cerebral neurological outcome.
ischemia is to measure a combination of both power and An important observation related to the process of
frequency parametefd although subtle changes caused neurological recovery is the presence of burst suppres-
by cerebral ischemia are best detected by measuring thesion pattern manifested in the EEG following global is-
peak and mean frequency of the alpha rhyffitf22in chemic brain injury. Shermart al.®4% recently re-
patients with a nondisabling stroke, the peak frequency Ported a high degree of bursting during the early period
of the alpha rhythm appears to be decreased in the af-after injury was associated with a good neurological out-
fected hemisphere and reveals significant variations in come. A typical bursting EEG is shown in Fig. 1. The
the complexity. In the present investigation of rodent idea of characterizing bursting EEG using subband
models subject to a global ischemia, we have observedWwavelet entropy is to characterize the interactions and the
similar changes in the alpha rhythm patterns during the sporadic nature of switching of the EEG microstates be-
recovery period. Thus, in these circumstances, it would tween the two distinguished phases of bursting and back-

be useful to have priori information about the changes 9round rhythms. Though background rhythms are oscil-
latory, their amplitudes are often dictated by a

Address correspondence to Professor N. V. Thakor, Department of nonStatlonary r_andom F_’rocess' Smce the statistical d'_sm'
Biomedical Engineering, 701, Traylor Building, 720 Rutland Avenue, DUtions associated with bursting and accompanying
Baltimore MD 21205. Electronic mail: nthakor@bme.jhu.edu background activity within each clinical band are time
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closest definition of the clinical bands are: gamma
Background - (31.2-62.5 Hy, beta(15.6-31.2 Hy alpha(7.8-15.6
Hz), theta(3.9-7.8 Hz, and delta(1.9-3.9 H32. In this
paper, the entropy defined using the wavelet coefficients,
- . referred to as subband wavelet entrg®WWE) is, hence,
used for the segmentation of the different subbands of

WM the EEG following injury.

THEORY
I | The entropy of a random variable reflects the degree
/ | of disorder that the variable possesses. The more uncer-
Burst ] tain the variable is, the greater its entropy. Entrdgpyor

discrete random variablX is defined a&*'°

0 2 4 6 8 10
Time (Secons)

H(X)=—2, P(X=a)logP(X=4a;), (1)
FIGURE 1. An EEG signal containing background and burst- I
ing activities.
where a; are the possible values of. The entropy is
always greater than zero. The conventional definition of

varying, the entropy measure should be defined using aentropy (the Shannon entropyis described in terms of
time-frequency formulatioA?* Using a time frequency the temporal distribution of signal energy in a given time
description as described by the wavelet coefficiéAts, window. The distribution of energy in a specified number
we anticipate that the high frequency bursting episodes of data values intervals is described in terms of the
are represented by the low entropy wavelet coefficients probabilities in signal spacgp;} where p; is the prob-
as opposed to the high entropy of the background oscil- ability that X=4g; .
latory rhythms. Entropy is defined as a measure of un-  An efficient estimator for the density function usually
certainty of information in a statistical description of a requires either several samples of the process or strong
system'? If the frequency band is manifested as a peak assumptions about the process. To account for the non-
then it has low entropy while if it is broadband then it stationarities in the EEG following resuscitation and
has high entropy. Due to the combined presence of burstsgradual recovery, we consider the time—frequency distri-
and background activity, the signature used for segmen-bution for the definition of entropy. In this approach, the
tation should characterize the variations of entropy in probability density function is replaced by the coeffi-
each band as reflecting the sporadic nature of switching cients of a given time—frequency representatibRR) of
of the EEG microstates between bursting and rhythmic the signal°2*
activities. The time—frequency representation based on Fourier

In this paper, we present a novel approach to segmen-analysis suffers from a significant problem because the
tation of the fine changes in the subband EEG measuredspectral selection concept is based on a sinusoidal rep-
during the period of recovery following a short instance resentation, which has an infinite extent in the basis
of cerebral injury created using hypoxic/asphyxic cardiac function. As a result, activity with sharp variations in
arrest in a rodent model. Distinct types of bursts have in amplitude, phase and frequency such as the burst activi-
general different types of frequency localizations and ties present in the EEG after injury cannot be well re-
that the time-varying energies may be tracked by observ- solved. The transient features of the bursting activity are
ing the temporal variations of the squares of the wavelet optimally represented using a continuous type wavelet
coefficients. transform. However, since we restrict the frequency lev-

The wavelet transform is also useful for progressively els to the discrete frequency bands of clinical interest, we
and systematically “decomposing” the EEG into multi- resort to a simpler way of estimating the wavelet coef-
scaled components. For EEG sampled at 250 Hz, a five-ficients using a five level decomposition using the stan-
level decomposition results in a good match to the stan- dard discrete wavelet transform. We used biorthogonal
dard clinical bands of interesf. There are no strict  splines wavelets, for the purpose of matching the mor-
guidelines being followed as to the exact subdivision of phological features of the bursts in the presence of back-
the clinical bands. However, we follow the dyadic fre- ground oscillations.
guency scales that are closest to the standard definition It was found empirically that biorthogonal wavelet
of the clinical bands. Thus for the present discussion, the with order (6,8) resulted in the least oscillations at the
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coarse levels due to spiking. Furthermore, higher orders BL

did not improve the accuracy of the filtered wave forms.
The wavelet decomposition for a given EEG signal
s(t) is obtained as

]

2

=—o0

N o
s(t) a2 M-+ 2 X Gk

X (27 1t—k), )
where C4(k), Cy(k), ... ,Cn(k) are the wavelet coeffi-
cients and the sequendey(k)} represent the coarser
resolution signal at resolution leval. Sinces(t) can be
assumed to be zero mean aNdis large, then theay
term is nearly zero. Each subband contains the informa-
tion of the signals(t) corresponding to the frequencies
2171ggl<|0'|<2/w.. The subband wavelet entropy is
now defined in terms of the relative wavelet energy
(RWE) of the wavelet coefficient. Defining the energy
at each resolution levegl=1, ... N, using the wavelet
coefficients estimated for an EEG segment within a slid-
ing temporal window with index as

En,,-=§ Cp,i (K[, @)

the total energy of the wavelet coefficients will then be
given by

En,totaI:; En,j . (4

Then, the normalized values, which represent the RWE
are expressed as

pn,j:En,j /En,total- (5

Since, for each time window, =;p,;=1, the subband
wavelet entropy is defined using the probability distribu-
tion associated with the scale levieas

H(n)=—; Pn,; l0g Py, - (6)

METHODS
Protocol

The Animal Care and Use Committee of the Johns
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FIGURE 2. d) EEG signal record for a period of 200 min
covering base line, asphyxia, and the evolving period. Fig-
ures in the inset represent typical EEG segments: (a) prior to
injury (BL), (b) during early (ER), and (c) late periods of
recovery (LR).

controlled periods of asphyxia and cardiac arrest. After
preparation, the rats were anesthetized with Halothane
and secured to a stereotaxic frame. Five snfallmm
diam) depressions were drilled in the skull. Electrodes
were screwed into the depressions and cemented in place
using cranioplastic grip cement. The asphyxia protocol
was initiated by a period of anesthetic washout. Imme-
diately after the 5 min anesthetic washout period, as-
phyxia was induced by stopping the ventilator and
clamping the ventilator tubes for a controlled duration.
After the airway obstruction period, resuscitation was
initiated by resuming mechanical ventilation at 100% O
at 90 breaths/min and performing cardiopulmonary re-
suscitation (CPR. When a spontaneous mean arterial
blood pressurédMABP) was more than 50 mm Hg and
return of spontaneous circulatigROSQ was achieved,
then CPR was stopped. After 1 h of recovery, rats were
extubated and allowed to breathe spontaneously.

Data Collection and Preprocessing

The EEGs were recorded from two differential chan-
nels from the left and right frontoparietal regions of the
rat’s brain. Each channel was sampled at a frequency of
250 Hz using a 12 hit A/D converter. The signal was
lowpass filtered at 100 Hz cutoff frequency prior to digi-
tization. Figure 2 shows the EEG signal recorded for a
period of 200 min. The EEG recording is divided in

Hopkins Medical Institutions approved the experimental three parts: before asphyxidase ling, asphyxia, and
protocol used in this study. The asphyxic cardiac arrest evolving recovery period(the period when the EEG
and resuscitation protocol was performed as modified reaches 70% of the base-line amplitudehe division of
from Katz and colleagu€$. Long-term EEG was re-
corded from awake behaving rats after being subjected torological outcome of the experimetftThe figures in the

the evolving EEG into subphases is related to the neu-
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inset represent typical base-lin8L) EEG segments

prior to injury, during early and late periods of recovery Gamma l “ I II I l I I
(ER, LR). The ER period is generally characterized by a ‘
very high level of burst or burst suppression activity Beta - I:I:I
while the LR period is characterized by general restora-

tion of a continuous rhythm. - i1
Alpha 05
0

Computation of SWE l I

1
0.5
0
1
0.5
0

E—

Theta

To compute the subband wavelet entropy of an EEG
signal, it is first divided into windows each of 1 min
duration. For each of these windows, the five-level wave- Delta

let decomposition is computed using the standard wave- i p = il
let toolbox in MATLAB. The energy of each wavelet Time (min)
resolution is then calculated followed by calculating the

total energy of the wavelet coefficients at all resolutions LAY it ot ;
using Eqg.(4). The relative wavelet energy is determined e i ‘

for each resolution according to E(p), and finally, the

entropy of each resolution level is computgd using EQ- FIGURE 3. Normalized gray level segments based on SWE
(6). The entropy values are smoothed using a median for the 3 min asphyxia. The weight given to each gray level
filter before displaying the subband entropy in the form is as shown in the respective gray level bars. The injury and

of a “checkerboard” plot of gray levels. Each cell in the ~S!ence periods are represented by black.
plot has a gray level resulting from bilinear interpolation

of the neighboring four values of entropy. The smallest packground rhythm. For the alpha band, the recovery
and largest elements of the resulting vector of entropy was initiated by periodic bursting in the presence of a
values are assigned the 0 and 1 values of the gray levels e|atively weaker background rhythm. In contrast, the

respectively. Beta and gamma bands revealed a highly varying struc-
ture. The neurological deficit scoring assessed for this
EXPERIMENTAL RESULTS AND DISCUSSION animal after 6 and 24 h indicated a good outcShirar

the 5 min case, the entropy in each band exhibited a

A total of three EEG data records were segmented different gradation of recovery pattern as shown in Fig.
using the proposed method. The data records represend. The delta band recovered within the first 10 min. The
EEGs recorded using our experimental model for 3, 5, theta band took a little longer but again achieved a quick
and 7 min asphyxia. Figures 3, 4, and 5 show the nor-
malized gray level segments obtained using the SWE for
the 3, 5, and 7 min asphyxic cardiac arrest, respectively. o . ’ I
A gray level display has been developed to describe the |
entropy trends throughout the experiment. Black and
white represents the lowest and the highest levels of Beta [-:
entropy, respectively. The weight given to each gray
level is as shown in the respective gray level bars. The

1
e . . Alpha 05
injury and silence periods are represented by black. The i i

closeness between the gray level of the base line and the Theta
different phases of recovery. For the 3 min case, it is
evident that the entropy in each band has reached a high
value in about 10 min and it oscillates about this value
during the acute stage of recovery. The oscillations be-
tween high and low values of entropy invariably points
out the transitions between bursting and background ac-
tivity. Bursting EEG has a relatively low value of en-
tropy and background activity is characterized by rela-
tively high values of entropy. The delta and theta bands
recovered completely after resuscitation followed by in- guRe 4. Normalized gray level segments based on SWE
termittent periods of bursting in the presence of a strong for the 5 min asphyxia.

recovery in different bands is judged by comparing the ]

Delta




Wavelet Entropy for Subband Segmentation

Gamma

Beta

Alpha

Theta

Delta

FIGURE 5. Normalized gray level segments based on SWE
for the 7 min asphyxia.
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the beta, alpha, theta, and delta bands at 90 min after
resuscitation. The entropy levels dropped drastically in
the alpha, beta, and gamma bands following the short
episode of transient bursting. The neurological deficit
scoring performed at 6 and 24 h signaled a bad outcome.
From the above observations, it is clear that the early
bursting activity associated with graded and varying en-
tropy reaching levels close to the baseline during the first
90 min postresuscitation indicated a good outcome. This
finding is in accordance with the observations made by
Shermanet al?° Further, increase in SWE of low fre-
guency bands was observed in both the 3 and 5 min
cases. However, the early increase in SWE of high fre-
guency bands indicated a good outcome. The varying
structure of the coded patterns in each band reflected the
variations in the order of bursting activity. In all the
cases, such patterns were observed in the high frequency
bands. The large variations in the order of bursting in the
high frequency bands were also indicative of a good
outcome and are in agreement with the observations

recovery. In the alpha, beta and gamma bands, gradedhade by other researchéfs’® The coded segments pro-

patterns of recovery were noticed. The neurological defi-
cit scoring for this animal after 6 and 24 h also indicated
a good outcome. In the 7 min case, the high level of
entropy only appeared for a short period of time, almost
after 2 hours as shown in Fig. 5. There were no graded
and varying patterns of recovery similar to those noticed

vide detailed information about the various phases of
recovery.

To obtain a summary of the recovery trend using the
SWE, we estimated the mean with 95% confidence level
of the normalized entropy over consecutive segments of
1 h duration following resuscitation. For the three seg-

in the 3 and 5 min cases. In all the bands, there was aments, the mean entropy values are summarized in Table

long period of silence lasting for 40 min, followed by
sporadic(less frequentepisodes of bursting. The burst-
ing activity was mainly present in all bands except for

1. Maximum variance in SWE was observed in the
gamma and beta bands during the early recovery period.
It was noticed that for the 3 min animal, all bands re-

the gamma. A transient bursting pattern was observed invealed normalized entropy values higher thanz®D207

TABLE 1. Mean normalized entropy over segments of 1 h duration following resuscitation after

3, 5, and 7 min asphyxic cardiac arrest. ROSC

: Return of spontaneous circulation.

Duration of

Frequency asphyxia Segment 1 Segment 2 Segment 3
band arrest (min) (1 h post-ROSC) (2 h post-ROSC) (3 h post-ROSC)

Gamma 3 0.74x0.07 0.77+0.05 0.75*0.04

5 0.45+0.04 0.75+0.03 0.76+0.03

7 0.30+0.03 0.29+0.02 0.34+0.02

Beta 3 0.82+0.05 0.82+0.04 0.80+0.05

5 0.48+0.03 0.68+0.03 0.74+0.03

7 0.42+0.03 0.59+0.03 0.30+0.05

Alpha 0.86+0.03 0.84+0.03 0.82+0.03

0.63+0.02 0.74+0.02 0.81+0.02

0.35+0.04 0.53+0.04 0.36+0.03

Theta 3 0.82+0.02 0.84+0.02 0.80+0.02

5 0.75*0.02 0.80+0.02 0.87+0.02

7 0.40+0.05 0.57+0.03 0.49+0.02

Delta 3 0.84+0.02 0.84+0.02 0.80+0.02

5 0.87+0.01 0.88+0.01 0.92+0.01

7 0.42+0.05 0.50+0.03 0.52+0.02
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in all segments. For the 7 min animal, all bands revealed EEG injury measure of global cerebral ischentin. Neu-
normalized entropy values less than 8®07 in all seg- ggph?/s\llol.Allbzllgg—le?k, /2AOOE(;). ol R C. Koshier D. F
ments. Hence, we suggest the normalized entropy value o€ V- /A M. Bramoring, 4. saykal, i«. . Roefer, L.

Hanley, and N. V. Thakor. Dominant frequency analysis of
of 0.65:0.07 be used as a rule of thumb for global  EEG ‘teveals brain's response during injury and recovery.
segmentatior(see, also, Ref.)7

IEEE Trans. Biomed. Engt3:1083-1092, 1996.

POGray, R. Entropy and Information Theory. New York:
Springer, 1990.

"Jonkman, E., A. Van Huffelen, and G. Pfurtscheller. Quanti-

: tative EEG in cerebral ischemié&Clinical applications of
In this paper, SWE was used to segment the EEG computer analysis of EEG and other neurophysiological sig-

recorded during global hypoxic-ischemic injury and sub-  ha9. In: Handbook of Electroencephalography and Clinical
sequent recovery stages. Wavelet decomposition was Neurophysiology, edited by L. d. S. FH, S. v. L. W, and R. A.
used to segment the EEG into standard clinical bands.lZAmsterdam: Elsevier, 1986.

The entropy of the wavelet coefficients in each level of —~Katz, L., U. Ebmeyer, P. Safar, A. Radovsky, and R. Neumar.

e . - Outcome model of asphyxial cardiac arrest in rdtsCereb.
decomposition reflects the underlying statistics and the Blood Flow Metab.15:1032—1039, 1995,

degree of bursting activity associated with the recovery 13 aqier, V., A. C. van Huffelen, and G. H. Wieneke. Changes
phenomenon. While segmentation based on power did in quantitative EEG and blood flow velocity due to standard-

CONCLUSION

not reveal the varying degrees of bursting activities, the

ized hyperventilation: A model of transient ischaemia in

gray level segmentation based on SWE was able to give YOUng human subjectsElectroencephalogr. Clin. Neuro-

additional information related to the frequency of the
localized background activity and bursting. Results ob-
tained from our injury model indicate that the phases of

physiol. 70:377—-387, 1988.

Niedermeyer, E., D. L. Sherman, R. J. Geocadin, H. C.
Hansen, and D. F. Hanley. The burst—suppression electroen-
cephalogramClin. Electroencephalogr30:99-105, 1999.

recovery as shown by SWE based segmentation conform*®Pfurtscheller, G. Special uses of EEG computer analysis in

to previous observations of the interrelationships be-
tween the nature and frequency of bursting activities and

clinical environments. In: Electroencephalography. Basic
Principles, Clinical Applications, and Related Fields, edited
by N. E and F. H. Lopes da Silva. Baltimo(®ID): Williams

the outcome of the animaI: The graded patterns of SWE  nq wilkins, 1998, pp. 1215-1223.
reflect the background activity and the banded structure ®pfurtscheller, G., A. Stancak, Jr., and G. Edlinger. On the

in the segmentation is indicative of the frequency of

existence of different types of central beta rhythms below 30

bursting present in different phases of recovery. Based on Hz: Electroencephalogr. Clin. Neurophysiol02:316-325,

our observations of the entropy variations obtained from
different levels of injury, the normalized mean entropy of
0.65+0.07 was used to segment the recovering EEG.
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