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Abstract—In this paper, subband wavelet entropy~SWE! is
used for the segmentation of electroencephalographic sig
~EEG! recorded during injury and recovery following glob
cerebral ischemia. Wavelet analysis is used to decompose
EEG into standard clinical subbands followed by computat
of the Shannon entropy. The EEG was measured from rod
brains in a controlled experimental brain injury model
hypoxic-ischemic cardiac arrest. Results show that while
relative EEG power failed to reveal the order of bursting a
tivity associated with recovery, SWE was used to segment
EEG and delineate the initial bursting periods in each subba
Based on entropy variations obtained from a cohort of anim
with graded levels of hypoxic-ischemic cardiac arrest, an in
mittent pattern of bursting was observed in the high freque
bands. ©2003 Biomedical Engineering Society.
@DOI: 10.1114/1.1575757#

Keywords—Subband segmentation, Wavelet entropy, Bu
patterns.

INTRODUCTION

The electroencephalograph~EEG! is a potential tool
for the identification of cerebral injury and manageme
of patients with neurological trauma in critical care uni
EEG studies of cerebrovascular disease have mainly
cused on the determinants of cerebral ischemia.11,15,23A
sensitive and reliable way to study the effects of cereb
ischemia is to measure a combination of both power
frequency parameters,11 although subtle changes caus
by cerebral ischemia are best detected by measuring
peak and mean frequency of the alpha rhythm.13,18,22 In
patients with a nondisabling stroke, the peak freque
of the alpha rhythm appears to be decreased in the
fected hemisphere and reveals significant variations
the complexity. In the present investigation of rode
models subject to a global ischemia, we have obser
similar changes in the alpha rhythm patterns during
recovery period. Thus, in these circumstances, it wo
be useful to havea priori information about the change
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in structural complexity of these rhythms.16 Determina-
tion of relative changes in the subband entropy of ea
individual EEG frequency band would, therefore, be
clinically significant problem.

The monitoring of cerebral injury presently involve
eyeballing long stretches of EEG. Previous research
this direction was mostly carried out using signatures
power and frequency.5 One of the recent approaches
segmentation of EEG based on power and freque
uses a nonlinear energy operator.1,2 In this method, the
segmentation is performed in time domain and descri
the dual variations in power and frequency over tim
However, in situations where segmentation has to
performed in each frequency band, the above techni
cannot be applied. For example, in models related
brain injury, it has been shown that the recovery of bra
rhythms occurs in a highly selective fashion. The lo
frequency bands have been shown to recover faster
the higher frequency bands.9 In this situation, it becomes
important to monitor and quantify the variations with
each clinical frequency band. Further, segmentation
EEG within each band helps to understand their relat
role during recovery and may be used to predict
neurological outcome.

An important observation related to the process
neurological recovery is the presence of burst supp
sion pattern manifested in the EEG following global i
chemic brain injury. Shermanet al.,8,14,20 recently re-
ported a high degree of bursting during the early per
after injury was associated with a good neurological o
come. A typical bursting EEG is shown in Fig. 1. Th
idea of characterizing bursting EEG using subba
wavelet entropy is to characterize the interactions and
sporadic nature of switching of the EEG microstates
tween the two distinguished phases of bursting and ba
ground rhythms. Though background rhythms are os
latory, their amplitudes are often dictated by
nonstationary random process. Since the statistical di
butions associated with bursting and accompany
background activity within each clinical band are tim
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654 AL-NASHASH et al.
varying, the entropy measure should be defined usin
time-frequency formulation.7,24 Using a time frequency
description as described by the wavelet coefficients6,21

we anticipate that the high frequency bursting episo
are represented by the low entropy wavelet coefficie
as opposed to the high entropy of the background os
latory rhythms. Entropy is defined as a measure of
certainty of information in a statistical description of
system.10 If the frequency band is manifested as a pe
then it has low entropy while if it is broadband then
has high entropy. Due to the combined presence of bu
and background activity, the signature used for segm
tation should characterize the variations of entropy
each band as reflecting the sporadic nature of switch
of the EEG microstates between bursting and rhythm
activities.

In this paper, we present a novel approach to segm
tation of the fine changes in the subband EEG measu
during the period of recovery following a short instan
of cerebral injury created using hypoxic/asphyxic card
arrest in a rodent model. Distinct types of bursts have
general different types of frequency localizations a
that the time-varying energies may be tracked by obse
ing the temporal variations of the squares of the wave
coefficients.

The wavelet transform is also useful for progressiv
and systematically ‘‘decomposing’’ the EEG into mult
scaled components. For EEG sampled at 250 Hz, a fi
level decomposition results in a good match to the st
dard clinical bands of interest.17 There are no strict
guidelines being followed as to the exact subdivision
the clinical bands. However, we follow the dyadic fr
quency scales that are closest to the standard defin
of the clinical bands. Thus for the present discussion,

FIGURE 1. An EEG signal containing background and burst-
ing activities.
s
-

-
d

-
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closest definition of the clinical bands are: gamm
~31.2–62.5 Hz!, beta ~15.6–31.2 Hz!, alpha ~7.8–15.6
Hz!, theta~3.9–7.8 Hz!, and delta~1.9–3.9 Hz!. In this
paper, the entropy defined using the wavelet coefficie
referred to as subband wavelet entropy~SWE! is, hence,
used for the segmentation of the different subbands
the EEG following injury.

THEORY

The entropy of a random variable reflects the deg
of disorder that the variable possesses. The more un
tain the variable is, the greater its entropy. Entropy,H for
discrete random variableX is defined as3,4,10

H~X!52(
i

P~X5ai !log P~X5ai !, ~1!

where ai are the possible values ofX. The entropy is
always greater than zero. The conventional definition
entropy ~the Shannon entropy! is described in terms o
the temporal distribution of signal energy in a given tim
window. The distribution of energy in a specified numb
of data values intervals is described in terms of t
probabilities in signal space$pi% where pi is the prob-
ability that X5ai .

An efficient estimator for the density function usual
requires either several samples of the process or str
assumptions about the process. To account for the n
stationarities in the EEG following resuscitation an
gradual recovery, we consider the time–frequency dis
bution for the definition of entropy. In this approach, th
probability density function is replaced by the coef
cients of a given time–frequency representation~TFR! of
the signal.7,19,24

The time–frequency representation based on Fou
analysis suffers from a significant problem because
spectral selection concept is based on a sinusoidal
resentation, which has an infinite extent in the ba
function. As a result, activity with sharp variations
amplitude, phase and frequency such as the burst ac
ties present in the EEG after injury cannot be well r
solved. The transient features of the bursting activity
optimally represented using a continuous type wave
transform. However, since we restrict the frequency le
els to the discrete frequency bands of clinical interest,
resort to a simpler way of estimating the wavelet co
ficients using a five level decomposition using the sta
dard discrete wavelet transform. We used biorthogo
splines wavelets, for the purpose of matching the m
phological features of the bursts in the presence of ba
ground oscillations.

It was found empirically that biorthogonal wavele
with order (6,8) resulted in the least oscillations at th
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655Wavelet Entropy for Subband Segmentation
coarse levels due to spiking. Furthermore, higher ord
did not improve the accuracy of the filtered wave form

The wavelet decomposition for a given EEG sign
s(t) is obtained as

s~ t !5 (
k52`

`

aN~k!f~22Nt2k!1(
j 51

N

(
k52`

`

Cj~k!

3c~22 j t2k!, ~2!

whereC1(k), C2(k), . . . ,CN(k) are the wavelet coeffi-
cients and the sequence$aN(k)% represent the coarse
resolution signal at resolution levelN. Sinces(t) can be
assumed to be zero mean andN is large, then theaN

term is nearly zero. Each subband contains the inform
tion of the signals(t) corresponding to the frequencie
2 j 21gqs8<uv8u<2 jvs8 . The subband wavelet entropy
now defined in terms of the relative wavelet ener
~RWE! of the wavelet coefficients.17 Defining the energy
at each resolution levelj 51, . . . ,N, using the wavelet
coefficients estimated for an EEG segment within a s
ing temporal window with indexn as

En , j5(
k

uCn, j~k!u2, ~3!

the total energy of the wavelet coefficients will then
given by

En,total5(
j

En, j . ~4!

Then, the normalized values, which represent the R
are expressed as

pn, j5En, j /En,total. ~5!

Since, for each time windown, ( j pn, j51, the subband
wavelet entropy is defined using the probability distrib
tion associated with the scale levelj as

H~n!52(
j

pn, j log pn, j . ~6!

METHODS

Protocol

The Animal Care and Use Committee of the Joh
Hopkins Medical Institutions approved the experimen
protocol used in this study. The asphyxic cardiac arr
and resuscitation protocol was performed as modifi
from Katz and colleagues.12 Long-term EEG was re-
corded from awake behaving rats after being subjecte
controlled periods of asphyxia and cardiac arrest. Af
preparation, the rats were anesthetized with Haloth
and secured to a stereotaxic frame. Five small~2 mm
diam! depressions were drilled in the skull. Electrod
were screwed into the depressions and cemented in p
using cranioplastic grip cement. The asphyxia proto
was initiated by a period of anesthetic washout. Imm
diately after the 5 min anesthetic washout period,
phyxia was induced by stopping the ventilator a
clamping the ventilator tubes for a controlled duratio
After the airway obstruction period, resuscitation w
initiated by resuming mechanical ventilation at 100%2
at 90 breaths/min and performing cardiopulmonary
suscitation ~CPR!. When a spontaneous mean arter
blood pressure~MABP! was more than 50 mm Hg an
return of spontaneous circulation~ROSC! was achieved,
then CPR was stopped. After 1 h of recovery, rats w
extubated and allowed to breathe spontaneously.

Data Collection and Preprocessing

The EEGs were recorded from two differential cha
nels from the left and right frontoparietal regions of th
rat’s brain. Each channel was sampled at a frequenc
250 Hz using a 12 bit A/D converter. The signal w
lowpass filtered at 100 Hz cutoff frequency prior to dig
tization. Figure 2 shows the EEG signal recorded fo
period of 200 min. The EEG recording is divided
three parts: before asphyxia~base line!, asphyxia, and
evolving recovery period~the period when the EEG
reaches 70% of the base-line amplitude!. The division of
the evolving EEG into subphases is related to the n
rological outcome of the experiment.12 The figures in the

FIGURE 2. d… EEG signal record for a period of 200 min
covering base line, asphyxia, and the evolving period. Fig-
ures in the inset represent typical EEG segments: „a… prior to
injury „BL …, „b… during early „ER…, and „c… late periods of
recovery „LR….
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656 AL-NASHASH et al.
inset represent typical base-line~BL! EEG segments
prior to injury, during early and late periods of recove
~ER, LR!. The ER period is generally characterized by
very high level of burst or burst suppression activ
while the LR period is characterized by general resto
tion of a continuous rhythm.

Computation of SWE

To compute the subband wavelet entropy of an E
signal, it is first divided into windows each of 1 mi
duration. For each of these windows, the five-level wa
let decomposition is computed using the standard wa
let toolbox in MATLAB. The energy of each wavele
resolution is then calculated followed by calculating t
total energy of the wavelet coefficients at all resolutio
using Eq.~4!. The relative wavelet energy is determine
for each resolution according to Eq.~5!, and finally, the
entropy of each resolution level is computed using E
~6!. The entropy values are smoothed using a med
filter before displaying the subband entropy in the fo
of a ‘‘checkerboard’’ plot of gray levels. Each cell in th
plot has a gray level resulting from bilinear interpolatio
of the neighboring four values of entropy. The smalle
and largest elements of the resulting vector of entro
values are assigned the 0 and 1 values of the gray lev
respectively.

EXPERIMENTAL RESULTS AND DISCUSSION

A total of three EEG data records were segmen
using the proposed method. The data records repre
EEGs recorded using our experimental model for 3,
and 7 min asphyxia. Figures 3, 4, and 5 show the n
malized gray level segments obtained using the SWE
the 3, 5, and 7 min asphyxic cardiac arrest, respectiv
A gray level display has been developed to describe
entropy trends throughout the experiment. Black a
white represents the lowest and the highest levels
entropy, respectively. The weight given to each gr
level is as shown in the respective gray level bars. T
injury and silence periods are represented by black.
recovery in different bands is judged by comparing t
closeness between the gray level of the base line and
different phases of recovery. For the 3 min case, it
evident that the entropy in each band has reached a
value in about 10 min and it oscillates about this va
during the acute stage of recovery. The oscillations
tween high and low values of entropy invariably poin
out the transitions between bursting and background
tivity. Bursting EEG has a relatively low value of en
tropy and background activity is characterized by re
tively high values of entropy. The delta and theta ban
recovered completely after resuscitation followed by
termittent periods of bursting in the presence of a stro
-

,

t

.

e

h

-

background rhythm. For the alpha band, the recov
was initiated by periodic bursting in the presence of
relatively weaker background rhythm. In contrast, t
Beta and gamma bands revealed a highly varying str
ture. The neurological deficit scoring assessed for t
animal after 6 and 24 h indicated a good outcome.8 For
the 5 min case, the entropy in each band exhibited
different gradation of recovery pattern as shown in F
4. The delta band recovered within the first 10 min. T
theta band took a little longer but again achieved a qu

FIGURE 3. Normalized gray level segments based on SWE
for the 3 min asphyxia. The weight given to each gray level
is as shown in the respective gray level bars. The injury and
silence periods are represented by black.

FIGURE 4. Normalized gray level segments based on SWE
for the 5 min asphyxia.
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657Wavelet Entropy for Subband Segmentation
recovery. In the alpha, beta and gamma bands, gra
patterns of recovery were noticed. The neurological d
cit scoring for this animal after 6 and 24 h also indicat
a good outcome. In the 7 min case, the high level
entropy only appeared for a short period of time, alm
after 2 hours as shown in Fig. 5. There were no gra
and varying patterns of recovery similar to those notic
in the 3 and 5 min cases. In all the bands, there wa
long period of silence lasting for 40 min, followed b
sporadic~less frequent! episodes of bursting. The burs
ing activity was mainly present in all bands except f
the gamma. A transient bursting pattern was observe

FIGURE 5. Normalized gray level segments based on SWE
for the 7 min asphyxia.
d

the beta, alpha, theta, and delta bands at 90 min a
resuscitation. The entropy levels dropped drastically
the alpha, beta, and gamma bands following the sh
episode of transient bursting. The neurological defi
scoring performed at 6 and 24 h signaled a bad outco

From the above observations, it is clear that the ea
bursting activity associated with graded and varying e
tropy reaching levels close to the baseline during the fi
90 min postresuscitation indicated a good outcome. T
finding is in accordance with the observations made
Shermanet al.20 Further, increase in SWE of low fre
quency bands was observed in both the 3 and 5
cases. However, the early increase in SWE of high f
quency bands indicated a good outcome. The vary
structure of the coded patterns in each band reflected
variations in the order of bursting activity. In all th
cases, such patterns were observed in the high freque
bands. The large variations in the order of bursting in
high frequency bands were also indicative of a go
outcome and are in agreement with the observati
made by other researchers.14,20 The coded segments pro
vide detailed information about the various phases
recovery.

To obtain a summary of the recovery trend using t
SWE, we estimated the mean with 95% confidence le
of the normalized entropy over consecutive segments
1 h duration following resuscitation. For the three se
ments, the mean entropy values are summarized in T
1. Maximum variance in SWE was observed in t
gamma and beta bands during the early recovery per
It was noticed that for the 3 min animal, all bands r
vealed normalized entropy values higher than 0.760.07
TABLE 1. Mean normalized entropy over segments of 1 h duration following resuscitation after
3, 5, and 7 min asphyxic cardiac arrest. ROSC: Return of spontaneous circulation.

Frequency
band

Duration of
asphyxia

arrest (min)
Segment 1

(1 h post-ROSC)
Segment 2

(2 h post-ROSC)
Segment 3

(3 h post-ROSC)

Gamma 3 0.7460.07 0.7760.05 0.7560.04
5 0.4560.04 0.7560.03 0.7660.03
7 0.3060.03 0.2960.02 0.3460.02

Beta 3 0.8260.05 0.8260.04 0.8060.05
5 0.4860.03 0.6860.03 0.7460.03
7 0.4260.03 0.5960.03 0.3060.05

Alpha 3 0.8660.03 0.8460.03 0.8260.03
5 0.6360.02 0.7460.02 0.8160.02
7 0.3560.04 0.5360.04 0.3660.03

Theta 3 0.8260.02 0.8460.02 0.8060.02
5 0.7560.02 0.8060.02 0.8760.02
7 0.4060.05 0.5760.03 0.4960.02

Delta 3 0.8460.02 0.8460.02 0.8060.02
5 0.8760.01 0.8860.01 0.9260.01
7 0.4260.05 0.5060.03 0.5260.02
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658 AL-NASHASH et al.
in all segments. For the 7 min animal, all bands revea
normalized entropy values less than 0.660.07 in all seg-
ments. Hence, we suggest the normalized entropy v
of 0.6560.07 be used as a rule of thumb for glob
segmentation~see, also, Ref. 7!.

CONCLUSION

In this paper, SWE was used to segment the E
recorded during global hypoxic-ischemic injury and su
sequent recovery stages. Wavelet decomposition
used to segment the EEG into standard clinical ban
The entropy of the wavelet coefficients in each level
decomposition reflects the underlying statistics and
degree of bursting activity associated with the recov
phenomenon. While segmentation based on power
not reveal the varying degrees of bursting activities,
gray level segmentation based on SWE was able to g
additional information related to the frequency of t
localized background activity and bursting. Results o
tained from our injury model indicate that the phases
recovery as shown by SWE based segmentation conf
to previous observations of the interrelationships
tween the nature and frequency of bursting activities a
the outcome of the animal. The graded patterns of S
reflect the background activity and the banded struct
in the segmentation is indicative of the frequency
bursting present in different phases of recovery. Based
our observations of the entropy variations obtained fr
different levels of injury, the normalized mean entropy
0.6560.07 was used to segment the recovering EEG
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