
Annals of Biomedical Engineering,Vol. 29, pp. 764–774, 2001 0090-6964/2001/29~9!/764/11/$15.00
Printed in the USA. All rights reserved. Copyright © 2001 Biomedical Engineering Society
Comparison and Clinical Application of Frequency Domain Methods
in Analysis of Neonatal Heart Rate Time Series

KEVIN L. CHANG,1,4 KENNETH J. MONAHAN,1,3 M. PAMELA GRIFFIN,2 DOUGLAS LAKE,4

and J. RANDALL MOORMAN1,5

1Department of Internal Medicine~Cardiovascular Division!, 2Department of Pediatrics~Neonatology Division!, 3Department
of Biomedical Engineering,4Department of Mathematics, and the5Cardiovascular Research Center, University

of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA

(Received 2 November 2000; accepted 13 June 2001)
er-
ar-

t-
rate
rier
ng,

s.
de-
ec-
al
the
aly-
ling

the

sis.

c-
so-

ys-
ted

th-

a
-

d-
on

ges
cur
ure-
ry
es

The
o-
wer

-
n-
in
hat

hic
ly
e
ra-

al
he
er-
tin-
ly,
ree
d
tal

as
er-
at
te

ally
es.
RR
in
non

be-

R4
:
na-

the
Abstract—The frequency content of the heart rate~HR! series
contains information regarding the state of the autonomic n
vous system. Of particular importance is respiratory sinus
rhythmia ~RSA!, the high-frequency fluctuation in HR attribu
able to respiration. The unevenly sampled nature of heart
data, however, presents a problem for the discrete Fou
transform. Interpolation of the HR series allows even sampli
but filters high-frequency content. The Lomb periodogram~LP!
is a regression-based method that addresses these issue
evaluate the efficacy of the LP and Fourier techniques in
tecting RSA, we compared the spectrum of intervals, the sp
trum of HR samples, and the LP of simulated and clinic
neonatal time series. We found the LP was superior to
spectrum of intervals and the spectrum of HR samples in an
sis near the critical frequency of one half the average samp
rate. Applying the LP to clinical data, we found~1! evidence of
stochastic resonance, an enhancement of periodicity with
addition of small amounts of noise, and~2! reduced power at
all frequencies prior to clinical diagnosis of neonatal sep
© 2001 Biomedical Engineering Society.
@DOI: 10.1114/1.1397791#

Keywords—Lomb periodogram, Spectrum of intervals, Spe
trum of heart rate samples, Low-pass filter, Stochastic re
nance, Neonatal sepsis.

INTRODUCTION

The activity of the autonomic nervous system~ANS!
contains important information regarding organ and s
tem function. Parasympathetic tone can be estima
noninvasively by evaluation of respiratory sinus arrhy
mia ~RSA!, the variation of heart rate~HR! with
respiration.16,21,29 In newborn infants, loss of RSA is
characteristic of asphyxia9 and the degree of RSA pre
dicts long-term outcomes.11 The variations in intratho-
racic pressure, venous return, left-ventricular en
diastolic volume, and arterial blood pressure brought
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moorman@virginia.edu. Both Kevin L. Chang and Kenneth J. Mo
han contributed equally to this manuscript and should be considered
first author.
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by each respiratory cycle produce characteristic chan
in the HR. The frequency at which these changes oc
corresponds to the respiratory rate. Therefore, meas
ment of RSA is tantamount to sampling the respirato
rate with the HR, measured using a series of the tim
between consecutive heartbeats, or RR intervals.
presence of RSA is typically identified by frequency d
main analysis, where it appears as a peak in the po
spectrum of the corresponding HR time series.

In addition to detection of RSA in studies of auto
nomic function, the early diagnosis of sepsis is pote
tially another important application for frequency doma
analysis of neonatal HR time series. We have found t
heart rate characteristics~HRC! change early in the
course of this common and potentially catastrop
illness14 for which premature infants are at particular
high risk. The abnormalities of the RR interval tim
series were reduced variability and transient decele
tions, similar to the findings of fetal distress. Our initi
analysis utilized the time domain, and we found that t
third moment, or skewness, as well as quantiles or p
centiles of normalized data sets could be used to dis
guish normal from abnormal time series. Interesting
the standard deviation, which reports only on the deg
of variability, did not discriminate between normal an
abnormal data. We might therefore expect that the to
power of the signal is a poor marker of abnormality,
the total power is identical to the variance. This obs
vation does not, however, rule out the possibility th
frequency band-specific information might discrimina
between normal and abnormal records.

HR data possess several unique properties not usu
encountered by traditional frequency domain techniqu
Chief among these properties is the fact that the
intervals are not evenly sampled in time. The variation
the time between heartbeats is exactly the phenome
that heart rate variability~HRV! analysis attempts to
characterize. For even sampling to occur, the time
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765Frequency Domain Analysis of Neonatal Heart Rate Series
tween beats would have to be constant~as in the case o
an artificial pacemaker! and there would be no variability
to analyze. While unevenly sampled data may har
periodic components and thus can be analyzed by F
rier theory, the familiar discrete Fourier transform~DFT!
is not an accurate probe of the periodicity when t
sampling is not even. To further complicate matters,
inaccuracy increases as the variability increases.5 Berger
and co-workers have described an algorithm that use
interpolation scheme to create an evenly sampled se
of heart rates from RR interval data.5 They showed that
this method captures accurately the frequency conten
simulated RR data generated by an integrated pulse
quency modulation~IPFM! model. Although this ap-
proach has been widely used1,17,23 and recommended b
an international task force,36 several possible disadvan
tages exist. First, all data are interpolated, and no dire
measured values are used in the analysis. Second, M
suggested that the interpolation process acts as a
pass filter and attenuates the higher-frequency conten
the original RR series.27 As a result of this effect, sub
sequent analysis of the interpolated series may not
tirely reflect the characteristics of the actual data.

The issues raised by interpolation of series of R
intervals apply to all HR data. The study of neonatal H
series in particular presents a more fundamental c
lenge to traditional spectral methods. Specifically, neo
tal RSA may occur in bandwidths that are inaccessi
via Fourier analysis. The relationship between the typi
neonatal HR~120–160 beats/min! and respiratory rate
~40–80 breaths/min! is such that the Nyquist criterion i
often unsatisfied, resulting in aliasing of high-frequen
information to lower frequencies and subsequent dis
tion of the frequency spectrum.32,37 In addition, the mag-
nitude of RSA in newborns and adults decreases w
increasing respiratory rate.8,19 Therefore, neonatal RSA i
expected to be more difficult to detect than adult RS
regardless of the method used.

The Lomb periodogram~LP!, a method of spectra
analysis that utilizes least-squares fitting of data to si
soids of varying frequencies,20,26,30,33has several proper
ties that make it an attractive alternative to the DFT
neonatal HR analysis. The LP can effectively analy
unevenly sampled data, as sinusoids can be fit as clo
to unevenly sampled data as to evenly sampled poi
The method requires no interpolation—the RR interv
are analyzed directly. In addition, the LP method allo
the possibility of reporting on content above the avera
Nyquist frequency.31 This possibility only exists for spe
cial circumstances in which the sampling is increased
the same time that the signal frequency is increased
occurrence favored by chance and long records. In
case of RSA analysis, these conditions are not gua
teed as an increase in respiratory rate~signal of interest!
-
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does not necessarily correspond to an increase in
~sampling rate!.

Given the challenges posed by neonatal HR serie
traditional Fourier methods and the potential for the
to meet these challenges, we applied two Fourier me
ods and the LP to simulated and clinical neonatal H
data for the purpose of comparing how well each meth
detected RSA. We found the LP to be a superior meth
and used this method to test the hypotheses that neo
HR ~1! displays stochastic resonance and~2! displays
changes in the frequency domain prior to the clinic
diagnosis of sepsis.

THEORY

Methods of Spectral Analysis

We call the periodogram of the DFT of a RR interv
time series thespectrum of intervals. The sampling fre-
quency is 1 sample/heartbeat and is multiplied by
mean HR~heartbeats/s! to yield units of equivalent Hz.
This approach was improved by Berger and co-worke
who suggested an interpolation procedure yield
evenly spaced HR samples.5 We call the periodogram o
the DFT of the interpolated HR signal thespectrum of
HR samplesand note that the frequency unit is cycles
~Hz!.

A completely different approach to the problem
estimating frequency content of an unevenly samp
time series was developed by Lomb26 and expanded
upon by Scargle and others.33 The calculation of the
Lomb periodogram is equivalent to the least-squares
ting of the data to the sinusoidA cos@2pf(t2t)#
1Bsin@2pf(t2t)#, for which the power is proportional to
A21B2.33 This procedure minimizes the mean-square
ror between the sinusoid and each data point.

Bandwidth Limitations of the Methods

For any evenly sampled signal, the range for whi
the frequency content is available is limited by the sa
pling rate. In theory, for a periodogram to report mea
ingful information at a given frequency, the correspon
ing signal must be sampled at least at twice th
frequency. This critical sampling rate is known as t
Nyquist frequency. In cases where the sampled sig
contains frequency components greater than the Nyq
frequency, the power at those frequencies is spuriou
added to the periodogram ordinates at frequencies be
the Nyquist frequency, a process known as aliasing.

In healthy adults, the HR varies typically from 60 t
100 beats/min~1 to 1.67 Hz! and the respiratory rate
ranges from 6 to 20 breaths/min~0.1 to 0.33 Hz!. There-
fore, in attempts to sample the respiratory rate with
heart rate, the Nyquist criterion will be satisfied in th
majority of cases. In contrast, neonates generally hav
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766 CHANG et al.
HR between 120 and 160 beats/min~2 and 2.66 Hz! and
breathe at 40 and 80 breaths/min~0.67 and 1.33 Hz!. In
this case, the HR approaches the theoretical limit
accurate detection of the respiratory signal and may o
times fail to satisfy the Nyquist criterion. In practice, th
sampling frequency must be several-fold higher than
Nyquist frequency to prevent distortion of the resulta
spectrum. For each of the three methods under inve
gation, there are limitations to the frequency content t
can be reported on without aliasing.

For the spectrum of intervals, the frequencies are
ported in units of equivalent Hz.36 This measure is ob
tained from the product of the sampling rate~constant at
one sample/beat! and the mean HR~beats/s! of the cor-
responding series of RR intervals. In this scheme,
mean HR becomes the average sampling frequency.
spectrum of intervals reports accordingly on frequenc
up to 1

2 of the mean heart rate, the average Nyqu
frequency.

The spectrum of HR samples features a us
determined Nyquist frequency that is derived from t
resampling rate used to create the interpolated HR se
The resampling rate is usually taken to be 4 Hz, wh
corresponds to a Nyquist frequency of 2 Hz.5 The resa-
mpling frequency can be set arbitrarily, but disadva
tages exist at the extremes of selection. Setting the
quency too low risks missing a substantial portion of t
signal’s meaningful content. A high resampling fr
quency increases the degree of interpolation and t
increases the amount of nonphysiological informat
present in the resultant signal.

Laguna and co-workers demonstrated that the m
mum frequency that the LP can report on without alia
ing is one half the mean Nyquist frequency, which th
define as the mean HR.25 This limitation is analogous to
the Nyquist criterion of evenly sampled series. Of no
that study did not analyze separately epochs when
HR was greater than the average in order to assess
possibility of characterizing frequency content grea
than the average Nyquist frequency.20,30,31

Significance of Peaks in the Periodograms

To assess the statistical significance of the peaks
duced by the three methods, we modified a standard
used for this purpose, the Fisher test.7 This test begins
with the assumption that the Fuller test statisticsjm of
the M periodogram ordinates follow an exponential d
tribution. The jm are the individual periodogram ord
nates normalized to the average of all ordinates in
given periodogram. Moreover, the largestjm taken from
a population of periodograms of white noise follow
separate distribution described by Fuller.7 To calculate
the significance of the peaks, we determine the proba
ity that the largest observed Fuller test statistic from
-

e

.

-

e

-
t

given periodogram belongs to that distribution. O
modification was necessary because we have avera
periodogram ordinates, and we employed the fact t
sums of exponential distributions are described by
incomplete gamma distribution.

More formally, we assume the null hypothesis that o
M Fuller statistics$jm :1<m<M % ~excluding the ordi-
nate corresponding to the frequency zero! are derived
from the DFT of Gaussian white noise. Since the pe
odogram ordinates are exponentially distributed,
probability thatjm is less than a thresholdj thres beyond
which the probability of jm occurring is less than a
specified level of significance is

prob~jm,j thres!512e2j thres.

We definejmax to be the largest Fuller statistic of th
periodogram. It follows that the probability thatjmax is
less thanj thres ~i.e., that alljm are less thanj thres) is

prob~jmax,j thres!5~12e2j thres!M.

We interpret this as the probability that no periodic co
ponent exists at the frequency of that which correspo
to jmax. Chiu provided an improved test7 defining the
same probability as

prob~jmax,j thres!'12exp~2Me2j8!,

where

j85j thres

M212 logM

M2j thres
.

We need to modify this approach because we average
periodogram ordinates in order to reduce the error of
spectral density estimate.4 If we have M periodogram
ordinates$Pn :0<n<M21%, and average groups ofa
of these into one periodogram ordinate, we are left w
M /a periodogram ordinates$Pn8 :0<n<(M21)/a%. We
calculate the Fuller statisticjmax of the largest averaged
periodogram ordinate. Recall that the fundamental
sumption underlying the Fisher test is that the pe
odogram ordinates of Gaussian white noise are expon
tially distributed. For a statistical test of the averag
periodogram ordinates, we utilize the fact that sums oa
exponentially distributed numbers follow a gamma d
tribution. Thus,

prob~jmax<j thres!512P~a,j thres!
M /a,

where
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P~a,x!5E
0

x 1

G~a!
ua21e2udu

and

G~a!5~a21!! when aPZ.

As defined above, these statistical tests apply only to
largest periodogram ordinate. We used the same tes
other ordinates as conservative approximations of th
statistical significance. Indeed, in the case of the n
hypothesis that the time series is Gaussian white no
the probability that the second~or third, fourth, etc.!
highest peak exceedsj thres must be less than the prob
ability that the highest peak exceedsj thres.

Scargle showed analytically that power in the LP
Gaussian white noise also follows an approximate ex
nential distribution,33 justifying our application of the
Fisher test to LP ordinates in addition to ordinates of
other spectra to determine an approximate significa
level.

METHODS AND DATA SETS

Frequency Domain Methods

For a time series withN points, the standard deviatio
of each periodogram ordinate may be reduced by a fa
of 1/AN by averaging groups ofN ordinates into one
ordinate. Alternatively, the standard deviation may
reduced by 1/AN by dividing a data set intoN segments
of equal length, calculating periodograms for each s
ment, then averaging allN periodograms.4,31

To generate the spectrum of intervals, series ofm

consecutive RR intervals were divided into seven s
ments of length 2m22, with each segment overlappin
the previous one by 50%. These segments were anal
with a fast Fourier transform~FFT! algorithm31 and the
resulting spectra were averaged to produce a represe
tive periodogram. Following the treatment above, t
maneuver reduces the error of the spectral estimate
factor of 1/A7.4 As part of the FFT analysis, the serie
mean was removed and a 10% split cosine bell wind
was applied to the data.

The strategy used for the spectrum of HR sample
similar to that used for the spectrum of intervals. A ser
of consecutive RR intervals of length 2m were resampled
at 4 Hz using the algorithm described by Berger a
co-workers.5 The resulting series of HR samples w
analyzed using a similar procedure as for the spectrum
intervals. The resampling rate of 4 Hz was greater th
the mean HR of any of the simulated or clinical da
sets, resulting in a resampled series with a greater n
ber of data points than the original series for any giv
n

,

r

d

-

a

f

-

sampling period. The nearest multiple of 2m resampled
points was used to generate the spectrum of HR sam
using a FFT technique.

To generate the LP, a series of consecutive RR in
vals were analyzed using the algorithm set forth
Lomb26 and modified by Press and co-workers.30,31As in
the other spectral methods, an averaging procedure
used to reduce the standard deviation of the periodog
ordinates.

Simulated Data

We followed the established practice of using t
IPFM model to simulate HR data with known frequen
content. The IPFM model is derived from the formula5

T5E
tk

tk11
@11m~ t !#dt.

Given the timetk of the kth point of the series, thek
11st point is defined at timetk11 , when the integral
reaches the valueT, and the ordinate of that point i
taken as the intervaltk112tk . We evaluated the integra
at time steps of 0.01 s, and setT to be 0.4 s to simulate
neonatal RR intervals. Since our chosenm(t) had an
expected value of zero, the mean sampling rate of
IPFM model as such wasT. The Nyquist frequency was
thus 1/(2T), or 1.25 Hz.

Our purpose was to evaluate power over a range
frequencies, so we chosem(t) as follows:

m~ t !5 (
n53

12

0.02 cos@2p~0.1n10.01!t#.

Theoretically, the periodograms generated from
above model would have peaks of equal height at, a
only at, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 1.
1.11, and 1.21 Hz. These ten frequencies were chose
that power at the harmonics of one frequency did n
contribute to power at any of the other frequencies. O
initial implementation of this model yielded per
odograms with a multiplicity of peaks at other freque
cies. We attribute this finding to the fact that the IPF
model has been shown analytically to have power
many of the frequencies of the formn f1k/2T, for inte-
ger n$2`,n,`% and k$1<k,`%.3 A similar result
exists whenm(t) is a sum of sinusoids.28 In order to
remove these extra peaks, we altered the thresholdT of
the model by integrating toT1t r , wheret r is a normally
distributed pseudorandom number with mean 0 s and
standard deviation 0.033 s. These parameters corres
to a coefficient of variation of 8.3%, a reasonable a
proximation of neonatal HRV.15
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768 CHANG et al.
Clinical Data

RR interval time series data were collected in t
Neonatal Intensive Care Unit~NICU! of the University
of Virginia Hospital. The University of Virginia Human
Investigations Committee approved the protocol. T
continuous analog output of a bedside EKG monitor w
input to an 80486-based microcomputer equipped wit
digital signal processor board~National Instruments AT-
2200DSP! and sampled at 4 kHz. QRS complexes we
identified using amplitude and duration criteria.

We studied two clinical data sets. The first was a
of 2551 consecutive RR intervals from a NICU patie
paralyzed with the nondepolarizing neuromuscular blo
ing agent pancuronium and mechanically ventilated at
breaths/min ~0.67 Hz!. Normally distributed noise of
varying standard deviations, in multiples of 0.5 ms, w
added to assess the effect of added noise on RSA p
height. The local respiratory peak height was defined
be the largest periodogram ordinate between 0.66
0.68 Hz. The local signal-to-noise ratio was calculated
the quotient of the respiratory peak height and the av
age power in the bands 0.57–0.66 and 0.68–0.77
The second clinical data set consisted of records from
consecutive admissions to the NICU. Twenty of tho
patients had a total of 24 episodes of neonatal sepsis
sepsis-like illness. We defined this illness to be pres
when a physician suspected sepsis and obtained a b
culture and initiated antibiotic therapy.14 This outcome
measure is limited because different physicians mi
have different criteria for suspecting the illness. It h
however, the advantage of being a clearly defined ti
point. Despite its limitation, we have found that hea
rate characteristics change significantly prior to this cli
cal endpoint. From the EKG signal of the bedside mo
tors, we recorded sets of 4096 RR intervals~approxi-
mately 20–30 min of data! as previously described.14

There were 3863 6 h control epochs and 94 epochs fro
times prior to 24 episodes of sepsis and sepsis-like
ness.

Statistical Analysis

For all spectra shown, we calculated Fuller statist
corresponding to significance levels ofp,0.05 andp
,10210, based on the relevant values ofM and a. Any
periodogram ordinate that exceeded the first thresh
was considered a significant peak. Ordinates that
ceeded the second threshold were considered highly
nificant. In addition, we consider that using the Ful
statistics of periodogram ordinates in lieu of the pe
odogram ordinates themselves normalizes the p
odograms, allowing direct comparisons.

For analysis of the large clinical data set, the stati
cal approach was based on multivariable logistic regr
sion analysis of infants near the time of episodes
k

.

d

d

-

sepsis, as diagnosed by the clinician.14 We first deter-
mined thea priori risk of sepsis based of clinical fea
tures of birth weight and gestational age, and sough
establish whether knowledge of frequency domain ch
acteristics of RR interval time series added a signific
amount of additional information. We used the same
proach to compare the LP and the spectra of H
samples. Each regression model yielded estimates of
probability of sepsis in the next 24 h for each 6 h epo
for each infant. We fit the data to a multivariable logist
regression model and adjusted the variance–covaria
matrix of the maximum likelihood fit to adjust for th
replication of measures from the same subject. We u
receiver-operating characteristic~ROC! curve analysis to
compare the effectiveness of models to estimate the
of impending sepsis. This standard biostatistical metric
the area of the plot relating the true positive rate~or
sensitivity! to the false positive rate~or 1 minus speci-
ficity! for many possible test threshold values, and
equal to 1.0 for a test that discriminates perfectly and
0.5 that discriminates not at all. Testing the hypothe
that a measure of RR interval time series adds signific
additional information to that already available to th
clinical requires several steps. We~1! determined thea
priori risk using a regression model that relates bi
weight and gestational age to the outcome of sepsis,~2!
we determined a new estimate of risk when frequen
domain measures were added as input variables for
model, and ~3! we used a Wald chi-square test o
whether the improvement in ROC area was significan

RESULTS

Periodograms of Noisy IPFM Model Series

We tested the three spectral methods on simula
data from a ten frequency IPFM model. We judged t
methods’ relative merits based on two criteria:~1! the
periodograms should display a peak at the input frequ
cies of the model and~2! the heights of these peak
should be equal.

Figure 1 shows a segment of the time series~A!, the
spectrum of intervals~B!, the spectrum of HR sample
~C!, and the Lomb periodogram. The peaks of the sp
trum of intervals at 0.31, 0.41, 0.51, and 0.81 Hz e
ceeded thep,0.05 threshold, while only the peaks
0.31 and 0.41 Hz exceeded thep,10210 threshold. No
other periodogram ordinates exceeded either of
thresholds. In the spectrum of HR samples, the peak
0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, and 1.01
exceeded thep,10210 threshold while the peak at 1.1
Hz only exceeded thep,0.05 level. The Fuller statistic
of the periodogram ordinate at 1.21 Hz did not rea
either threshold. Sixteen spurious peaks exceeded thp
,0.05 threshold; all but two~at 0.359 and 0.486 Hz! of
these occurred at frequencies less than 0.3 Hz. In g
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769Frequency Domain Analysis of Neonatal Heart Rate Series
eral, peak height decreased with increasing freque
The peak at 0.41 Hz does not follow this trend as it
less than the peak at 0.51 Hz. This behavior is due to
effective splitting of the power at 0.41 Hz into tw
nearby frequencies. The Fuller statistic is 24.41 at 0.4
Hz and 20.34 at 0.4116 Hz. If the power at these t
frequencies is lumped together at 0.41 Hz, the trend
decreasing power with increasing frequency ho
throughout the tested frequency range. The decrea
power with increasing frequency suggests a low-pass
tering effect of the interpolation process. Peaks at all
frequencies in the Lomb periodogram exceeded thep
,10210 level. There were no spurious peaks presen
the Lomb periodogram. Note that near the average

FIGURE 1. Noisy IPFM model with ten periodic components.
„A… The first 100 points of the series. „B… The spectrum of
intervals of 16,384 „214

… points in the series. The spectrum
originally had 8192 „213

… periodogram ordinates that were
condensed into 1024 „210

… ordinates up to the average Ny-
quist frequency of 1.25 equivalent Hz. „C… The spectrum of
HR samples of the first 16,384 points of the resampled times
series, which corresponds to the first 10,103 points of the
original series. The spectrum originally had 8192 ordinates
that were condensed into 1024 ordinates with frequencies up
to the Nyquist frequency of 2 Hz. „D… The LP of the first
10,103 points of the original time series. The number of or-
dinates and the frequency range are the same as for the
spectrum of HR samples. The periodogram ordinates are dis-
played as Fuller statistics. Peaks that exceed these lines are
interpreted as statistically significant. The dotted lines in
panels „B…, „C…, and „D… correspond to pË0.05 and p
Ë10À10 for MÄ1024 and aÄ8.
.

g

quist frequency of 1.25 Hz, the LF detects correctly
highly significant peak at 1.21 Hz, whereas the spectr
of intervals fails to detect a peak and the spectrum of
samples detects a statistically insignificant peak.

To further demonstrate the low-pass filter effect of t
interpolation process, we analyzed a noisy IPFM mo
that contained equal power at all frequencies. Figure
shows analysis of the IPFM model series withm(t)51
1@0.125*rand(t)#, where rand(t) returned normally dis-
tributed pseudorandom numbers with mean 0 and v
ance 1. As expected, all Fuller statistics of the spectr
of intervals and the Lomb periodogram, regardless
frequency, were close to 1. The spectrum of HR samp
however, shows higher than expected power at low f
quencies and lower than expected power at higher
quencies. The interpolation process distorts power o
the entire range of frequencies, acting as a low-pass fi
with a 23 dB cutoff of approximately 1 Hz.

Detection of Neonatal RSA

We next compared the three spectral methods’ abi
to detect RSA in neonatal HR data. Figure 3 shows
spectral analysis of a RR interval series from a prete
infant treated with the paralytic agent pancuronium w
was breathing at a rate of 40 breaths/min~0.67 Hz!

FIGURE 2. IPFM white-noise model. „A… The first 100 points
of the series. „B… The spectrum of intervals, the spectrum of
HR samples, and the LP. Each spectrum shown is the aver-
age of 1000 spectra. Note that the spectrum of intervals ends
at 1.25 equivalent Hz.



as

ak

Hz

re-
k.
the
at

ar-
the
he
tha

the
at
Hz

the
ith
ls.

the
cy
ing

es.
in-
ory
ri-
um
ass

ds,
s of
h of
nce
ally
he

of
de
tio
ise.
ise
as

di-
al
al
of
the
e
oted

ain
nd
ter-
sis
-
ry

nd
dis-
lity
al
is

770 CHANG et al.
delivered by a mechanical ventilator. The mean HR w
145 beats/min~2.42 Hz!. Since all respiratory activity
was due to the ventilator, we expect to find a RSA pe
in the periodogram at 0.67 Hz.

The spectrum of intervals shows a peak at 0.67
that exceeds thep,0.05 but not thep,10210 threshold.
There is another significant peak at 1.11 Hz that rep
sents aliasing of the first harmonic of the RSA pea
Since the mean HR of the time series was 2.42 Hz,
Nyquist frequency is 1.21 Hz, less than the 1.32 Hz
which the first harmonic occurs. The power at this h
monic is aliased to a frequency symmetric about
Nyquist frequency, resulting in the peak at 1.11 Hz. T
spectrum of HR samples shows a peak at 0.67 Hz

FIGURE 3. Mechanically ventilated neonate. „A… The first 100
points of the series. „B… The spectrum intervals of the first
2048„211

… points of the time series. The spectrum originally
had 1024 ordinates which were condensed into 256 ordi-
nates with frequencies up to the average Nyquist frequency
of 1.25 equivalent Hz. „C… The spectrum of HR samples of the
first 4096 „212

… points of the resampled series, which corre-
sponds to the first 2480 points of the original time series.
The spectrum originally had 2048 ordinates, which were con-
densed into 512 ordinates with frequencies up to the Nyquist
frequency of 2 Hz. „D… The LP of the first 2480 points of the
original time series, with the same number of ordinates and
the same frequency range as the spectrum of HR samples.
The periodogram ordinates are displayed as Fuller statistics.
Peaks that exceed these lines are interpreted as statistically
significant. The dotted lines in each spectrum correspond to
pË0.05 and pË10À10 for MÄ256 „B… or 512 †„C… and „D…‡ and
aÄ4 †„B…, „C…, and „D…‡.
t

exceeds both thresholds and an insignificant peak at
first harmonic of 1.32 Hz. The LP shows two peaks th
exceeded both significance thresholds, one at 0.67
and one at the first harmonic of 1.32 Hz.

The LP and the spectrum of HR samples detected
periodic component at the respiratory frequency w
higher Fuller statistics than the spectrum of interva
The LP had higher power at the RSA peak than
spectrum of HR samples. Conversely, the low-frequen
peaks of the LP had less power than the correspond
low-frequency peaks of the spectrum of HR sampl
Both the LP and the spectrum of HR samples had
creased power at 1.32 Hz, twice the infant’s respirat
rate. This peak was highly significant in the Lomb pe
odogram but failed to reach significance in the spectr
of HR samples. We attribute these results to the low-p
filtering effect of interpolation.

Stochastic Resonance of Neonatal HRV

Having detected RSA with all three spectral metho
we could use these data to determine how the height
peaks change relative to one another as the strengt
the periodic component decreases relative to the varia
of the entire data series. To this end, we added norm
distributed noise to the RR intervals derived from t
infant on the ventilator. We created many data sets
this type, each with an incrementally higher magnitu
of noise. We observed how the RSA signal-to-noise ra
in the periodograms changed with each increase in no
Figure 4 shows this analysis of the RSA signal-to-no
ratio. As described earlier, the signal-to-noise ratio w
calculated relative to the heights of periodogram or
nates in a small, local window rather than the glob
window of the entire periodogram. Note that the loc
ordinate ratio is actually higher with added noise
small standard deviation. This enhancement of
signal-to-noise ratio with the addition of noise to th
system is called stochastic resonance and has been n
in other biological and physical systems.10

Frequency Domain Analysis of Neonatal HRV Prior
to Sepsis

We investigated the usefulness of frequency dom
analysis in an important clinical setting. We have fou
that RR interval time series display abnormal charac
istics prior to the clinical diagnosis of neonatal sep
and sepsis-like illness,14 a potentially catastrophic infec
tious illness that is the leading cause of mortality in ve
low birth weight infants in the NICU.35 The heart rate
characteristics abnormalities were reduced variability a
transient decelerations, similar to those seen in fetal
tress. This is different from the characteristic abnorma
of HRV in adults with poor prognosis after myocardi
infarction, or with congestive heart failure, where there
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771Frequency Domain Analysis of Neonatal Heart Rate Series
reduced variability but apparently no transie
decelerations.22 In those settings, frequency doma
analysis has consistently shown reduced total varia
and reduced power at all frequencies.6,29 In the neonatal
setting, however, we found that the standard deviat
had little predictive information compared with measur
optimized to detect the presence of decelerations fro
base line of otherwise reduced variability. Thus, it w
not known if frequency domain measures are usefu
making the early diagnosis of neonatal sepsis and sep
like illness.

We tested the hypothesis that frequency domain m
sures indeed change prior to this important clinical dia
nosis. We continuously monitored 83 consecutive adm
sions to the NICU using previously described method14

The 20 infants who had one or more episodes of se
and sepsis-like illness had significantly lower bir
weight ~BW; median 1211 g compared to 2835 g,p
,0.001, rank sum test! and gestational age~GA; 29.5

FIGURE 4. Effect of the addition of noise to data from the
mechanically ventilated neonate. „A… Average of 1000 plots
of the signal-to-noise ratio of the RSA peak as a function of
the standard deviation of the added noise. „B… Expansion of
the low standard deviation section of „A…. Respiratory peak
height was defined as the largest periodogram ordinate be-
tween 0.66 and 0.68 Hz. The signal-to-noise ratio was calcu-
lated as the quotient of respiratory peak height and the av-
erage power „excluding the respiratory peak … in the band
0.57–0.77 Hz.
-

-

weeks compared with 36 weeks,p,0.001!, as
expected.12

We calculated the LP on each 4096 beat record,
integrated the variance in five bandwidths: 0–0.00
0.004–0.04, 0.04–0.15, 0.15–0.4, and 0.4–3.0 Hz.
summarized 6 h epochs beginning each midnight by t
median values. We performed the analysis on 94 reco
of 4096 beats summarizing 6 h epochs occurring within
24 h of an episode of sepsis and sepsis-like illness,
on 3863 records that were remote from overt illness.

Figure 5 shows box plots of the summary data fro
the LP analysis. In each of the frequency bands, the
plots show a small but significant reduction in power f
the records prior to sepsis. One explanation is that th
measures indeed change prior to sepsis. Another ex
nation is that they are surrogate measures for the w
known clinical risk factors of prematurity such as lo
BW and low GA. To test the hypothesis that frequen
domain measures add information to more readily av
able clinical data in the early detection of neonatal sep
and sepsis-like illness, we used multivariable logistic
gression. The steps were to determine the diagnostic
fulness of BW, GA, and the number of days in th
hospital, then to determine if significant new informatio
was gained when frequency domain measu
were added as input variables. The results are show
Table 1.

FIGURE 5. Comparison of LP prior to and remote from diag-
nosis of sepsis. The RR series were collected at times re-
mote from clinical events „control, clear boxes … or in the 24
h prior to a diagnosis of sepsis „events, hatched boxes …. LPs
were calculated and subsequently integrated over five band-
widths: „A… 0–0.004 Hz, „B… 0.004–0.04 Hz, „C… 0.04–0.15 Hz,
„D… 0.15–0.4 Hz, and „E… 0.4–3.0 Hz. In all five bandwidths,
differences between control and event values were statisti-
cally significant „pË0.05, rank-sum test …. In the box and
whisker plot, the horizontal line marks the median value, the
box encloses 50%, and the whiskers enclose 90% of the
data.
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TABLE 1. Regression analysis of frequency domain measures in the diagnosis of neonatal
sepsis and sepsis-like illness. BW Äbirth weight; days Ädays of postnatal age; d.f. Ädegrees of
freedom; GA Ägestational age; ROC Äreceiver–operator characteristic, overall p is for the entire
model, p for added information relates to the significance of the information added by the

frequency domain measures once the BW. GA, and days are known.

BW, GA, log (days) ROC area Overall p
p for added
information x2 d.f.

0.65 0.034 8.6 3
0–0.004 Hz 0.69 0.00010 0.0037 23 4
0.004–0.04 Hz 0.69 0.0010 0.027 18 4
0.04–0.15 Hz 0.66 0.040 0.53 10 4
0.15–0.4 Hz 0.66 0.067 0.96 8.8 4
0.4–3.0 Hz 0.65 0.066 0.73 8.8 4
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The most important findings are that only low
frequency components added significantly to clinical p
rameters in detecting early phases of neonatal sepsis
sepsis-like illness. This result is surprising, as it sugge
that the degree of RSA is not of importance in th
particular clinical setting, while it is of obvious impor
tance in many others. The contributions of the previou
described measures of moments and percentiles w
larger. The third and fourth moments, as well as the 10
25th, 75th, and 90th percentiles of normalized RR int
vals all contributed significantly to the clinical informa
tion in predicting sepsis in this data set~not shown!. This
result confirms our earlier findings comparing selec
low- and high-risk groups in an unselected population
consecutive admissions.14

DISCUSSION

We analyzed simulated and clinical neonatal HR
ries in the frequency domain using traditional Four
techniques~spectrum of RR intervals and spectrum
interpolated HR samples! and the Lomb periodogram,
method based on fitting data to sinusoids. Our most
portant findings are~1! the LP is better suited to detec
tion of neonatal RSA than Fourier-based methods;~2! in
a clinical data set in which respiration was at a sin
frequency, neonatal HR series can display stocha
resonance; and~3! spectral power is reduced at all fre
quencies in the 24 h prior to the clinical diagnosis
neonatal sepsis.

Comparison of the Lomb Periodogram with Fourier
Methods

The spectrum of intervals detected RSA, but d
played significant aliasing of power beyond the Nyqu
frequency. In the case of neonatal HR analysis, where
relationship between the HR and the respiratory rate m
not satisfy the Nyquist criterion, the restriction to fr
quencies below the Nyquist frequency could be a liab
ity. This limitation, along with the recognized difficult
d

e

of uneven sampling, suggests that this method may
be ideally suited for detection of neonatal RSA.

The spectrum of HR samples also detected RS
However, our analysis confirms that the interpolati
process used to create the HR samples acts as a low
filter and removes some of the high-frequency pow
from the original signal.27 This property is evident upon
analysis of white noise and simulated as well as clini
data. Thus, for infants breathing at very high respirato
rates, the interpolation process may remove the ba
widths necessary for detection of RSA.

The LP detected accurately RSA and displayed neit
aliasing nor any filtering of time series data. The LP a
returned the appropriate spectrum of white noise.

RSA has been used previously to report noninvasiv
on the function of the neonatal ANS. A consistent findi
is that the sleep state has a profound effect, but
nature of that effect varies in the literature. Hathorn us
the cross correlation of HR and respiratory rate signals
show enhanced entrainment of HR by respiration dur
quiet sleep.18 Using spectra of intervals, Baldzer an
co-workers found an inverse correlation of RSA wi
respiratory rate during quiet sleep.2 This finding is con-
sistent with the results of Dykes and co-workers, w
showed that relatively little power was contained in t
respiratory frequency range of sleeping neonates.12 Our
study differs in that our patient was premature, mecha
cally ventilated, and we used alternative methods
spectral analysis. The former difference may explain p
tially our results in light of the findings of Schechtma
and co-workers, who showed that RSA decreases o
the first month of life, then increases over the next fi
months.34 With regards to mode of ventilation, Koh an
co-workers found that RSA decreased with paralysis a
mechanical ventilation compared to spontaneous bre
ing, although those results were obtained from heal
young adults undergoing elective surgery.24 The sleep
state of our patient during the recording interval is u
known, although our patient may provide a model
RSA in REM sleep, during which all skeletal muscle
with the exception of the diaphragm are paralyzed.
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773Frequency Domain Analysis of Neonatal Heart Rate Series
Stochastic Resonance in Neonatal HR Series

One set of clinical data presented here is from
paralyzed infant with no respiratory effort beyond th
delivered by mechanical ventilation. Therefore, all of t
variance due to RSA lies in one very narrow frequen
band. However, the HR signal is subject to noise fro
other, nonrespiratory sources such as sympathetic
vous system activity and environmental temperature.
spite the presence of these influences, RSA was ea
detected. We hypothesized that the inherent biolog
noise present in the HR signal may have enhanced
detection of RSA, and we found that the addition
small amounts of artificial noise to this HR signal furth
enhanced the RSA peak. This finding is in agreem
with the hypothesis that detection of RSA is facilitat
by the presence of a noisy HR signal.

A similar stochastic resonance effect has been d
onstrated in crayfish mechanoreceptors.10 Douglass and
co-workers postulate that sensory systems are ideal
didates for stochastic resonance given their need to
tect weak signals in noisy environments. Applying th
hypothesis to our system, information regarding resp
tion may be more efficiently transmitted to regulators
cardiac parameters~baroreceptors, carotid bodies, sin
node! if other, noisy signals influencing those paramet
are present as well.

Frequency Domain Analysis of HR Prior to Clinical
Detection of Neonatal Sepsis

Power was reduced in all the frequency ranges p
to sepsis. The regression analysis showed that the re
tion in power at high frequency did not add informatio
to that present in the BW and age, but that reduction
power at low frequency did. Interpretation of these
sults within the framework of autonomic nervous syste
physiology requires, in our opinion, more settled guid
lines and a consensus on the assignments of high-
low-frequency power to the activity of the parasymp
thetic and sympathetic nervous systems, and the bala
between the two~see Ref. 13 and responses!. It is pos-
sible, moreover, that control of neonatal HR differs fro
that of adults in whom most of the studies have be
carried out. From a clinical standpoint, the results s
gest that frequency domain analysis may be a useful
in the clinical exercise to detect neonatal sepsis
sepsis-like illness prior to clinical symptoms. Further i
vestigation of a larger data set, though, is required.
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