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Abstract

We present a multi-objective evolutionary algorithm to exploit a medium-sized fuzzy outranking relation to derive 
a partial order of classes of alternatives (we call it RP2-NSGA-II). To measure the performance of RP2-NSGA-II, 
we present an empirical study over a set of simulated multi-criteria ranking problems. The result of this study 
shows that RP2-NSGA-II can effectively exploit a medium-sized fuzzy outranking relation. Finally, we present a 
real-case study for ranking the municipalities of the state of Guanajuato, Mexico by their levels of marginalization.
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1. Introduction

The multi-criteria ranking problem arises when a finite 
set of alternatives 1 2, ,..., mA a a a needs to be 
evaluated by several criteria 1 2, ,..., nG g g g to 
derive a partial preorder on A that reflects the priority 
of each alternative. Multi-Criteria Decision Analysis 
(MCDA) is an activity with a diversity of approaches, 
methods and techniques, which helps Decision Makers 

(DMs or DM for a unique Decision Maker) to solve this 
type of problem1. In the outranking approach of MCDA 
for the ranking problem, no prior information regarding 
the structure of the set of alternatives is known and the 
aim lies in constructing and understanding this structure. 
Within MCDA, the methods related to the outranking 
approach are attractive and suitable for ranking 
problems due to their simplicity2. Usually, these 
methods are performed in two main steps. First, a 
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pairwise comparison of the alternatives is made taking 
into consideration the evaluation criteria, to build one or 
several outranking relations. Normally, these outranking 
relations do not have remarkable mathematical 
properties such as completeness and/or transitivity. This 
is the reason for the second step, which addresses the 
intransitivities in the outranking relation to derive a 
ranking as close as possible to the original outranking 
relation.

Generally, exploiting a fuzzy outranking relation is a 
complex task. Several techniques to derive a ranking 
from a fuzzy outranking relation have been proposed in 
the literature of MCDA3–10.

Although some of these methods allow for building 
a transitive relation in an easy, fast and intuitive way, 
they have two main disadvantages 11,12:

Oversimplification of the information in the 
outranking relation; thus, they do not fully respect 
the preferences of the DM.

They lack a mechanism to detect and/or minimize 
the inconsistencies in the outranking relation, so do 
not adequately exploit the wealth of information. 
The most significant of the ranking methods based 
on choice or score functions is the pair-wise rank 
reversal effect 13.

In addition, most of these ranking approaches focus on 
ranking problems with small cardinality, which could be 
explored exhaustively by a real DM. Nevertheless, 
although certain approaches are able to consider larger 
sets of alternatives, many of them do not scale well due 
to complexity issues related to execution times and 
memory requirements. This is the case for optimization 
approaches (i.e., Slater-optimal ranking and ranking 
based on distances).

Because ranking is seen as a multicriteria decision 
analysis problem, it may be useful when considering 
larger MCDA ranking problem instances. Ranking may 
be used to reduce the larger preference-sets to a more 
manageable size by condensing and ordering the 
preferential information that is present in the original set 
of alternatives. A natural approach to extract 
preferential information from a medium-sized set of 
alternatives is to organize the set into classes that 
display certain properties. These properties may be 
derived from grouping the alternatives using preference 
relations. The application of a meta-heuristic approach 
is performed as an alternative to using traditional 
ranking procedures.

In the proposed ranking approach, to give meaning 
to a comprehensive model of preferences, the DM is 
mostly viewed as a mythical, inaccessible or vaguely 
defined person whose preferences can be used to 
enlighten the decision problem. The comprehensive 
model of preferences is only a system of preferences 
with which it is possible to work to bring forward 
elements of a response to certain questions14.

References 11 and 12 presented an approach that 
addresses the limitations of traditional methods by 
formulating the exploitation of the fuzzy outranking 
relation as a multi-objective combinatorial optimization 
problem and solving it by developing a Multi-objective 
Evolutionary Algorithm (MOEA). Although this 
approach has showed advantages over traditional 
ranking procedures, it was designed to address small-
sized sets of alternatives to derive a total order or 
preorder of alternatives. References 15 and 16 presented 
an evolutionary approach following Refs. 11 and 12,
which can handle medium-sized sets of alternatives to 
derive a partial order of classes of alternatives. This 
approach aims to find the closest anti-symmetric crisp 
outranking relation to the fuzzy outranking relation. 
Then, it applies a ranking procedure based on the 
repeated use of a choice function to derive a final 
ranking of the classes of alternatives. Although this 
approach showed positive results, the search space it 
explores is given by the set of all anti-symmetric crisp 
outranking relations from A . With the same purpose of 
exploiting a medium-sized fuzzy outranking relation to 
construct a recommendation for a multi-criteria ranking 
problem, Ref. 17 presents a MOEA based on Refs. 15
and 16 with the particular advantage that it integrates a 
partial preorder of alternatives into the optimization 
process performed by the multi-objective evolutionary 
algorithm. This last approach explores a search space 
given by the set of all partial orders of classes of 
alternatives from the set A .

The purpose of this paper is to detail, in a formal 
way, the MOEA presented in Ref. 17 and to present an 
empirical study to demonstrate its performance, a 
performance comparison with other MOEAs, and a new 
case study. The MOEA is a ranking procedure based on 
the hybridization of the reference point method with the 
non-dominated sorting genetic algorithm (NSGA-II); 
we call it RP2-NSGA-II, a MOEA procedure for 
grouping alternatives that are indifferent while also 
separating the classes that are strictly preferred to others 
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or incomparable so that a partial order between them is 
found.

In RP2-NSGA-II, the reference point method is not 
applied in the classical way, (i.e., together with an 
achievement scalarising function18), but rather by 
establishing a biased crowding scheme. Solutions near 
the reference point are emphasized by the selection 
mechanisms. The modified crowded comparison 
operator prefers solutions that are closer to a specified 
reference point while preserving the order induced by 
the Pareto-dominance relation. The extent and the 
distribution of the solutions are maintained by an 
additional parameter . This parameter, controlling the 
spread range of the obtained solutions, is easy to 
configure.

In RP2-NSGA-II, the non-dominated sorting 
mechanism of NSGA-II is extended to accommodate 
preferences (reference point) as an additional criterion. 
Individuals are sorted based on this modified sorting 
mechanism. The preferences are incorporated a priori.
With the supplied preferences, the search is gradually 
guided towards the region of interest of the DM.

Section 2 presents a way in which alternatives and 
classes of alternatives can be compared; in Sec. 3, we 
propose the RP2-NSGA-II procedure to exploit a fuzzy 
outranking relation of a medium-sized set of alternatives 
to derive a ranking. The empirical evaluation of RP2-
NSGA-II and its comparison with other algorithms is
presented in Sec. 4. Section 5 shows a real case study, 
and Sec. 6 presents some conclusions and discusses 
future research.

2. Modelling the Exploitation of a Fuzzy 
Outranking Relation

We present a way in which the exploitation of a fuzzy 
outranking relation in MCDA can be modelled. This is 
motivated by the definition given by Ref. 19 for the 
multicriteria ranking problem. We begin by defining a 
credibility calculus that is further used to model the 
indifference, preference and incomparability relations.

2.1. Credibility Calculus

The credibility calculus defined in this section is based 
on Refs. 20 and 21. The calculus contains two logical
states: true and false. It is a Boolean calculus. 
Considering a set of propositional statements, we 
associate with them the credibility function 

: [0,1] . For example, given a proposition p ,

if ( ) 1p , then p is considered to be true, whereas if 
( ) 0p , then p is considered to be false. All possible 

values of between zero and one, show a lower or 
higher degree of credibility with respect to the truth of 
proposition p. To extract the Boolean statements with 
respect to the truth of preposition p, we attach a cutting 
level [1/ 2,1) . This level is motivated by the fact 
that a larger value of the credibility function is required 
to validate the statement. Such fact, can be modeled 
with a crisp credibility function * : {0,1} defined 
as:

* 1, ( )
( )

0,
if p

p
otherwise (1)

Let , , and denote the logical operators negation, 
conjunction, and disjunction, respectively. Consider a 
finite set of ground statements, the grouping 
brackets, and the basic logical operators negation, 
conjunction and disjunction. With these elements, we 
may generate the set of all well-formed finite 
statements as:

: ,p p (2)

, : ( )x y x x x y x y
(3)

The credibility denotation can be extended to all well-
formed finite statements ,x y through:

( ) 1 ( )x x (4),

( ) max( ( ), ( ))x y x y (5),

( ) min( ( ), ( ))x y x y (6).

2.2. Modeling the Preference Relations

Consider a set 1 2{ , ,..., }mA a a a of decision 
alternatives and AS as a fuzzy outranking relation 
defined on A A , which models the preferences of the 
DM. For each pair of alternatives ( , )i j Aa a S ,

( , )i ja a is interpreted as the credibility degree of the 
predicate “ ia is at least as good as ja ”.

Let [0,1] be a cutting level that is associated 
with AS , such that if ,i ja a , the predicate “ ia
outranks ja , with credibility level ” is true i A ja S a ;
otherwise, it is false i A ja S a . Such association 
induces a crisp outranking relation AS , which can 
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deduce the following preference relations in the sense of 
22:

Indifference ( AI ): i A j i A j j A ia I a a S a a S a
Preference ( AP ): i A j i A j j A ia P a a S a a S a
Preference ( AP ): i A j i A j j A ia P a a S a a S a
Incomparability( AR ): 

i A j i A j j A ia R a a S a a S a

This 4-tuple ,  , ,  A AA AI P P R of preference relations 
forms a preference structure on A such that each 
preference relation satisfies the following properties: AI
is reflexive ( )i A ia I a and symmetric ( )i A j j A ia I a a I a ;

AP and AP are asymmetric ( )i A j j A ia P a a P a ,
( )i A j j A ia P a a P a ; and AR is irreflexive ( )i A ia R a
and symmetric ( )i A j j A ia R a a R a 22.

We may apply the credibility calculus and define the 
credibility of the ,  ,AA AI P P , and AR relations in a 
Boolean setting as:

* * *( ) min( ( ), ( ))i A j i A j j A ia I a a S a a S a (7)

* * *( ) min( ( ), ( ))i A j i A j j A ia P a a S a a S a (8)

* * *( ) min( ( ), ( ))i A j i A j j A ia P a a S a a S a (9)

* * *( ) min( ( ), ( ))i A j i A j j A ia R a a S a a S a (10).

Reference 23 defines the credibility degree of the 
indifference relation in a similar way. The relations 

,  , A AAI P P , and AR are mutually exclusive.

2.3. Comparing Classes of Alternatives

The proposed approach of constructing the relation 
between two classes of alternatives is based on 
aggregating all the relations between the alternatives of 
the two classes. The preference relation that appears 
most frequently between the alternatives of two classes 
is selected as the preference relation between the two 
classes of alternatives. This approach has also been used 
in Ref. 24.

Let },...,,{)( 21 kk CCCAP be a partition of A into 
k classes of alternatives. AS induces a preference 
structure ( ) ( ) ( ) ( ), , ,

k k k kP A P A P A P AI P P R on ( )kP A in the 
following way:

We define the credibility of any preferential relation 
(A) ( ) ( ) ( ) ( ){ , , , }

k k k k kP P A P A P A P AO I P P R between two 
classes , ( )r q kC C P A as:

*
( ) ( )

1(C ) ( )k k

i r j q

P A r P A q A i A j
r q a C a C

O C a O a
C C

(11)

Then, the crisp credibility degree *
( )kP A of any 

preferential relation 

(A) ( ) ( ) ( ) ( ), , ,
k k k k kP P A P A P A P AO I P P R between two 

classes , ( )r q kC C P A is defined as:

( ) ( )

( ) ( )

*
( ) ( ) ( ) ( )

( ) ( )

1 , if ( )
max( ( ),

( ) ( ),
( ))

0 ,

k k

k k

k k k k

k k

P A r P A q

P A r P A q

P A r P A q P A r P A q

P A r P A q

C O C
C P C

C O C C P C
C R C

otherwise

(12),

(A) ( ) ( ) ( ), ,
k k k kP P A P A P AO P P R

(13)

By definition of the ranking problem, the alternatives 
that are indifferent are grouped together, whereas those 
that are not indifferent are separated. By construction, 
the relation between any pair of classes is restricted to 
exclude the indifference relation ( )kP AI . Then, the 
relation between classes can either be of a preference in 
one direction or the other, or of incomparability. 
However, finding an alternative from qC that is strictly 
preferred to one from rC may put serious doubt on the 
fact that ( )C kr P A qO C . Any two classes rC and qC are 
preferentially consistent if a preference relation can be 
expressed between them and no alternative from rC is in 
a preference relation with any alternative from qC ,
which contradicts the preference relation between the 
two classes. The search for a partial order of classes that 
hold this property is a difficult task, and in the 
outranking approach, most of the cases are impossible. 
Nonetheless, it is useful to reduce the number of such 
contradictions between the proposed relation between 
classes and the individual relations between the 
alternatives inside them.

3. Proposed Ranking Procedure RP2-NSGA-II 
to Exploit a Fuzzy Outranking Relation

The aim of RP2-NSGA-II, is to find the closest partial 
order of classes of alternatives *

kP AO of a given fuzzy 
outranking relation AS . The rules for reflecting the 
consistence between AS and *

kP AO are as follows: 
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(i) If ia is indifferent to ja in AS , then both 
alternatives should belong to the same class in 

*
kP AO ,

(ii) If ia is preferred to ja in AS , then both 
alternatives should not belong to the same class in 

*
kP AO ,

(iii) If ia is preferred to ja in AS and i ra C and 
j qa C , then rC should be preferred to qC in 
*

kP AO , where rC and qC are classes of alternatives.
Because RP2-NSGA-II searches for a partial order of 
classes of alternatives close to AS , an individual in its 
population represents a partial order of classes of 
alternatives. To compare two individuals in the 
population, the algorithm should assign a better fitness 
value to the individual with the least number of 
inconsistencies, such as: i ja Ia in AS , which belong to 
different classes in *

kP AO ; i ja P a in AS , which belong 
to the same class in *

kP AO . Situations like these should 
be penalized. RP2-NSGA-II should discriminate the 
“different” (not indifferent) alternatives and at the same 
time group “similar” (indifferent) alternatives.

Given a fuzzy outranking relation AS , RP2-NSGA-II 
must search a partial order of classes of alternatives in 
such a way that the classes *

kr P AC O reflect the best 
compromise between the conflicting objectives, 
“discriminate the different alternatives in terms of 
preferences” but at the same time “group similar 
alternatives in terms of preferences.” While the first 
objective tends to maximize the number of classes, the 
second attempts to minimize them. The solution can be 
interpreted as the best compromise between conflicting 
objectives.

3.1. The MOEA RP2-NSGA-II

RP2-NSGA-II seeks the closest possible partial order of 
classes of alternatives *

kP AO from a given fuzzy 
outranking relation AS to generate a ranking 
recommendation of a medium-sized set of alternatives. 
It takes the basic structure from the NSGA-II25 and 
some of its principal characteristics. The following 
subsections present further details of the fundamental 
aspects of RP2-NSGA-II.

3.1.1. Representation of a potential solution in the 
ranking problem

An individual p (or potential solution) of the 
population in RP2-NSGA-II suggests a matrix 
representation of a crisp outranking relation AS ( is a 
cutting level that is associated with AS and p ) and can 

be decoded to form a partial order of classes of 
alternatives. The structure of p is composed by

( 1) / 2m m genes 1 2 —1 /2, ,  , m mp p p , where m is the 
cardinality of A . The set of possible values that every 
single gen might have is s {0,1,2,3} , where 
0 i A ja I a , 1 i A ja P a , 2 i A ja P a and 3 i A ja R a
(i.e., the preference relation of an ordered pair ( , )i ja a
is described by the s value of the rp gen) (Fig. 1a). 
The initial 1m genes depict the top row of the upper 
triangular matrix of AS ; the next ( 2)m genes depict 
the following row and so on until the last row (Fig. 1b). 
The structure of the individual p is completed by 
inferring the lower triangular matrix of AS from the 
mathematical properties that the preference relations 
satisfy.

3.1.1.1. Decoding process to obtain a partial order 
of classes of alternatives

The decoding process to obtain a partial order of classes 
of alternatives *

kP AO from an individual p , is 
performed by the following steps: 
Step 1. From the crisp binary relation AS that p
represents, calculate the number of alternatives that are 
preferred to each alternative (i.e., 

( ) {( , ) : }i i j A i ja a a S a P a ). ia reflects the 
rank of each alternative.
Step 2. Using a Bread-First Search algorithm, identify 
the connected components within each rank. Each 
connected component represents a class of alternatives 
(see Fig. 1c). These connected components represent the 
partition of classes of alternatives 

1 2, ,...,k kP A C C C .
Step 3. From AS , deduce the antisymmetric crisp 
outranking relation *

kP AS between the classes of 
alternatives as follows: For each pair of classes 
( , ) , 1, 2,..., ,r q kC C P A r k q r compute the crisp 
preference relation using Eq. (12). We construct *

)( APk
S

in a form that fulfills the properties of reflexivity and is 
anti-symmetric. *

)( APk
S is anti-symmetric because the 

indifference relation )( APk
I is reduced to an identical 

pair of classes.
Step 4. Let *

kP AS be the set of initial classes to be 
ordered. Let 1r be the current rank.
Step 5. Identify the classes in *

kP AS that are not 
preferred by anyone and assign to them the actual rank 
r.
Step 6. These classes, not preferred by anyone, are 
removed from *

kP AS .
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Step 7. Current rank r is incremented by one, this is r = r 
+ 1.
Step 8. If *

kP AS , go back to Step 5. Otherwise, the 
process is complete.
Once the decoding process is completed, a Hasse 
diagram can be drawn to represent the *

kP AO from 
( )kP AS . First, classes are drawn from top to bottom 

according to their ranking. Then, for each pair of classes 
*

( )( , )
kr q P AC C S a straight line is drawn connecting both 

classes if it is a cover relation. A class Cr covers a class 
Cs, if ( )kr P A sC P C and there is not any class *

( )kq P AC S
for which ( ) ( )k kr P A q q P A sC P C C P C (see Figs. 1d and 1e).

Fig. 1. Representation and decodification of an individual p .

3.1.2. Objective Functions

We now define objective functions that can be used to 
reflect the quality of a particular ranking result.

To compare individuals with different numbers of 
classes, we consider their fitness to be reflected by the 
degree with which each preference relation between two 
alternatives fits in the structure that the individual 
proposes. Ideally, all alternatives inside the same class 
are indifferent to each other, whereas those in different 
classes are not indifferent. If one class is preferred or 

incomparable to another, then all alternatives in the first 
class are preferred or incomparable to the alternatives of 
the second class. Furthermore, the degree of credibility 
of these relations is maximal.

3.1.2.1. Maximizing the cutting level

This approach considers the association of AS with a 
cut to define a crisp outranking relation AS to 

induce a preference structure that models the DM 
preferences. 

A high cut value reflects a high credibility of 
AS but may increase the incomparability of the pairs of 

alternatives. A 0.60, 0.75cut is seen as 
satisfactory to deduce the outranking8.

Each individual p is randomly associated with a 
cut that is connected with the credibility level of a 

crisp outranking relation AS defined A .
We would like to find potential solutions for which 

the credibility level is near one. This indicates the 
solution is more trustworthy. We call this objective the 
maximum cutting level objective.

3.1.2.2. The min cut objective

This objective function counts the alternatives that are 
not indifferent to each other in each class. The aim is to 
minimize these inconsistencies to form solutions that 
maximize the indifference inside each class.

*
( )

( ) ,
( ( )) ( )

k
r k i j r

P A k i A j
C P A a a C

f f P A a I a (14)

3.1.2.3. The minimum pair-wise preference 
disagreement objective

From a given pair of classes of alternatives 
*( , )

kr q P AC C O , let r qC OC be a preference relation 
between two pairs of classes, where 

, ,
k k kP A P A P AO P P R . Supposing that ( )kr P A qC P C , it is 

natural that, in the beginning of the procedure, the 
preference relation of some pair of 
alternatives ( , )i ja a , ,i r j qa C a C will contradict the 
relation between the two classes ( , )r qC C , i.e., 
[while ( )kr P A qC P C in *

kP AO ], [ i A ja I a , or i A ja P a , or 
i A ja R a in AS ]. In these conditions, we have an 

inconsistency between the aggregation model of 
preferences AS and the partial order of classes *

kP AO .
The quality of the final partial order *

kP AO should also 
be judged according to the number of its discrepancies 
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and concordances with AS and the crisp outranking 
relations AS . We define the following objective 
function:

1 2

* *
( ) 1 2

, ( )
min( ( ), ( ))

k
r q k i r

j q

P A r q i jO OC C P A a C
a C

g C O C a O a

(15)

where 21 OO means that the preference relation 1O of 
rC over qC in *

kP AO is different to the preference 
relation 2O of ia over ja in AS .

1 ( ) ( ) ( ) 2{ , , }, { , , , }
k k kP A P A P A A A A AO P P R O I P P R

(16)

( )kP Ag is a function that counts the number of the pair-
wise preference disagreements. The numbers of 
preferences between alternatives in the crisp outranking
relation AS that are in disagreement in the sense of the 
partial order of classes of alternatives *

kP AO are 
quantified.

( )kP Af and ( )kP Ag are minimized to come closer to a 
preferentially consistent partial order of classes of 
alternatives. This may be addressed as a multiobjective 
optimization problem.

3.1.3. The Multi-Objective Combinatorial 
Optimization Problem

Based on the objective functions defined previously, the 
multi-objective combinatorial optimization problem is 
formulated as follows:

( ) ( )

0

( ( )), (g ( )), ( ( ))

:

[0,1],

k kP A P AMin f p Min p Max p

Subject to
p

(17)

where is the set of partial orders of classes of 
alternatives of A , p is a partial order of classes of 
alternatives of a given set of alternatives A and 0 is a 
minimum level of credibility. 

Because there are not constraints with respect to 
how the alternatives have to be grouped together, which 
would in some way reduce the complexity of this 
problem, the only clear way of finding the true Pareto 
front, with respect to a particular fitness measure, is to 
consider the entire polytope of potential solutions. This 
means that all possible partitions ( )kP A of A need to be 
explored, leading to the selection of the best ones with 
respect to the considered fitness measures. Because the 
number of partitions of a set is equal to the Bell number, 

this approach to solving this problem is exponential in 
complexity.

Due to complexity issues related to the problem of 
ranking in MCDA, in RP2-NSGA-II, the decoding 
process to obtain a partial order of classes of 
alternatives *

kP AO from an individual p is divided into 
two steps: first, it partitions a medium-sized set of 
alternatives into k classes; and second, based solely on 
the initially provided information, it elicits a partial 
order between the determined classes of alternatives as a 
recommendation for ranking problems from a medium-
sized set of alternatives. An improvement of the
proposed approach is to integrate partitions and 
relations between classes into the optimization process 
that RP2-NSGA-II performs.

We present the remaining steps of the proposed 
approach below:

3.1.4. Initialization procedure

Typically, evolutionary algorithms begin with an initial 
population composed of N individuals. Each individual 
in the population represents a potential solution to a 
particular problem. Frequently, this population is 
randomly generated, which in our case does not result in 
favorable initial partitions because it is likely that the 
classes are mixed to a high degree.

The initialization procedure that this approach 
proposes is based on 26, which uses two algorithms: 
Prim’s algorithm27 and an extension of the K-means 
algorithm28. This procedure obtains initial spread 
solutions close to the Pareto front. Solutions with high 
connectivity grade are generated using the Minimum 
Spanning Tree (MST). At most, half of the population is 
generated using the MST. Solutions with good 
performance under the compactness are generated by 
the extension of the K-means algorithm.

3.1.4.1. Multi-criteria distance between alternatives

The distance ),( ji aad among pairs of alternatives is 
essential for the initialization procedure of the 
population. This approach maintains the MCDA 
distance definition of Ref. 28, which is defined as 
follows:

4

1
( ) ( )

( , ) 1 k i k jk
i j

Q a Q a
d a a

m (18)
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In Eq. (18), Q is a 4-tuple
( ), ( ), ( ), ( )A i A i A i A iI a P a P a R a that defines the profile 

for a given alternative ia A where:

1( ) { | } ( )A i j i A j iI a a A a I a Q a (19)

2( ) { | } ( )A i j i A j iP a a A a P a Q a (20),

3( ) { | } ( )A i j j A i iP a a A a P a Q a (21),

4( ) { | } ( )A i j i A j iR a a A a R a Q a (22).

3.1.4.2. Generating solutions based on MST

To generate individuals for the initial population based 
on the Minimum Spanning Tree (MST), first, a 
dissimilarity D matrix is calculated by computing 
distances for ( , )i ja a A A using Eq. (18). Once D
is generated, Prim´s algorithm is used to find the MST.

The idea behind this procedure is to create a
graph and detect its connected components. These 
connected components represent the partition 

1 2, ,...,k kP A C C C of classes of alternatives that 
can be decoded to an individual genotype. Because the 
obtained MST corresponds to a solution with a single 
class, more solutions are generated by dividing the class 
into different numbers of classes. To do so, it is 
necessary to cut the links of the MST until the desired 
number of classes is reached. Special attention has to be 
paid to the selection of the link to cut. Cutting any link 
can produce undesirable results, i.e., could lead to the 
separation of "outliers" that could be part of a class26.
To avoid this effect, the definition of "interesting links" 
is used, which involves the discovery of a real class 
structure. For a set of data, an interesting set of classes 
derived from the MST can be constructed as follows: 
(i) All interesting links of MST are detected and sorted 

by their degree of interest in a list.
(ii) A set of classes is built using the ordered list: 

{0,..,min( , 0.5 1)}n I fsize , where fsize is 
the total number of initial solutions.

(iii) A class nC is generated by cutting the first 
interesting link n .

Once the partition on the set of alternatives kP A is 
generated, Eq. (12) is used to deduce the antisymmetric 
crisp outranking relation *

kP AS between the classes of 
alternatives. Next, the procedure continues to step 4 of 
the “Decoding process to obtain a partial order of 
classes of alternatives” (Sec. 3.1.1.1 of this document) 

to create a partial order of classes of alternatives *
kP AO .

Finally, *
kP AO (phenotype) is encoded into an 

individual (genotype) of the initial population p .

3.1.4.3. Generating solutions based on the K-means 
algorithm

By using the Prim's algorithm, only half of the initial 
population is generated. To complete this population, an 
extension of K-means is used. This algorithm generates 
classes of decision alternatives in terms of MCDA, as 
described in the following steps:
1. Generate the initial partition 

},...,,{)( 21 kk CCCAP of the set of alternatives A:
randomly select k alternatives as the initial centroids 

1 2, ,..., kc c c for the k classes. Then, assign each 
alternative ia A to the class lC with the nearest 
centroid lc (e.g., min ( , )i ld a c ).
2. Update the centroid for each class ( )l kC P A
through a profile ( )lQ r defined as:

: ( )i i p la A a Q r (23)

where

{1,2,3,4}
arg max : ( ),j i q j j l
q

p a a Q a a C
(24)

The centroid lc of class lC is defined as a fictitious 
alternative lr .
3. Assign each alternative ia A to the class Cl whose 

lc centroid has the minimal distance to it ( , )i ld a c .
4. Repeat steps 2 and 3 until the partition ( )kP A no 
longer changes or a certain number of iterations have 
been performed.

This procedure is performed to obtain different 
numbers of classes of alternatives 

2,.., min , 0.5 1Ak fsize I fsize . At most, half 
of the population is generated by the K-means 
algorithm. With the resulting partition kP A , it is 
necessary to deduce the antisymmetric crisp outranking 
relation *

kP AS , to create a partial order of classes of 
alternatives *

kP AO and to encode it into an individual of 
the population, as with the solutions based on MST.

3.1.5. Crossover and Mutation Operators

The uniform crossover29 is used because it is unbiased 
with respect to the ordering of genes and can generate 
any combination of alleles from the two parents in a 
single crossover event30.
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For the mutation operator, a modified version of the 
Uniform Mutation is employed. The Uniform Mutation 
operator requires a single parent and produces a single 
offspring. This operator randomly selects a gen rp from 
the individual p and randomly alters its allele value s
to produce an offspring, where —1 /21, 2,..., m mpr is 
a random value with a uniform probability distribution. 
Modifying a single gene in the individual might not 
alter the structure of the final solution using the 
proposed decoding process. Therefore, a mutation 
probability pm (usually 1%) is used to randomly 
determine the number of genes to be mutated. Hence, 
the mutation has more chances to alter the structure of 
the individual.

3.1.6. Preference incorporation in NSGA II

Most approaches in the evolutionary multi-objective 
optimization literature concentrate mainly on adapting 
an evolutionary algorithm to generate an approximation 
of the Pareto frontier. However, this does not solve the 
problem. We present an idea previously introduced in 
the literature31–33: incorporate into NSGA II the DM’s 
preferences, expressed as a set of solutions assigned to 
ordered categories. In RP2-NSGA-II, we modified the 
NSGA II to include selective pressure toward non-
dominated solutions that belong to the Region of 
Interest (ROI).

Along with convergence to the Pareto-optimal set, it 
is also desired that an evolutionary algorithm maintains 
a good spread of solutions in the obtained set of 
solutions. The original NSGA II used the crowded-
comparison approach, which maintains sustainable 
diversity in a population by controlling crowding of 
solutions in a deterministic and prespecified number of 
equal-sized cells in the search space.

To solve the multi-criteria ranking problem using 
NSGA II, it is not necessary to search the entire Pareto 
optimal set Ptrue or the associated Pareto front PFtrue

because many of the non-dominated solutions are not of 
interest to the DM. In RP2-NSGA-II, we use the strategy 
of attempting to find in each NSGA II generation the 
most promising and attractive solutions for the DM, 
which in our case are those individuals 

( ) ( )( , )
k kP A P Ap f g whose ( )kP Af and ( )kP Ag scores are 

close to zero and have an acceptably high value of . It 
is sufficient to seek a restricted Pareto optimal set,
which for our purpose is defined as follows:

( ) ( ): (f ( ),g ( )) ,

, 0.5

k ktrue P A P A

restricted
true

p P p p

P where is a small
non negative number

(25)

Based on this strategy, the proposed method attempts to 
evolve a population toward the true restricted Pareto 
frontier )( restricted

truePF by means of a succession of the 
restricted non-dominated solutions subset 

1 2( ) { ( ), ( ),..., ( )}restricted
current nPF t p t p t p t . At each 

generation, the method computes the non-dominated 
solutions for the ranking problem that is closest to the 
fixed aspiration level ( ) ( )( , )

k kP A P Af g , with 
( ) ( ) 0

kP Af p and ( ) ( ) 0
kP Ag p according to the 

Tchebycheff metric.
The true restricted Pareto frontier )( restricted

truePF is the 
Region Of Interest (ROI) of the Pareto front for the DM, 
i.e., the privileged zone of the Pareto frontier that best 
matches the DM’s preferences.

In RP2-NSGA-II, we use a modified crowded-
comparison approach to identify a small, privileged 
subset of the Pareto front )( restricted

truePF . The new 
approach does not require user-defined parameters to 
identify the subset of the Pareto front. To describe this 
approach, we first define a Fixed Aspiration Point 
(FAP) metric and then present the FAP-comparison 
operator.

Fixed Aspiration Point distance: To identify the 
solutions surrounding the fixed aspiration level 

( ) ( )( , )
k kP A P Af g , with ( ) ( ) 0

kP Af p and ( ) ( ) 0
kP Ag p

according to the Tchebycheff metric, we calculate the 
center of mass of the set ( )

1 2 ( ){ , ,...,r r r r
rp p p p of solutions 

in rank r. The infinity norm of this point ( )r CM rp
serves as the threshold value.

The Center of Mass of a group of points is defined 
as the weighted mean of the points’ positions. The 
weight applied to each point is the point’s mass. is 
the maximum holder metric. Note that 

(1) restricted
currentp PF .

For each solution i in rank r, calculate the distance 
count ifald _ using the following equation:

,_ ( ) _
1 ,

r
i r r

r ir
i i

p
if pd fal p d fal

otherwise (26)

This quantity serves to measure the proximity of 
solution r

ip to the fixed aspiration level (FAL) (call this 
the distance to the fixed aspiration level ( ifald _ )).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

753



J.C. Leyva et al. / Exploitation of a Medium-Sized Fuzzy Outranking Relation

The ifald _ -distance computation requires sorting 
the population according to each objective function 
value in ascending order of magnitude.

After all population members in the set are assigned 
a distance, we compare two solutions by their extent of 
proximity with the fixed aspiration level. A solution 
with a smaller value of this distance measure is, in some 
sense, less crowded and closest to the fixed aspiration 
point. This value is what we compare in the 
fixed_Aspiration_Point-Comparison Operator described 
below.

Crowded-Fixed_Aspiration_Point (C-FAP)-
Comparison Operator: The C-FAP-comparison 
operator ( n ) guides the selection process at the 
various stages of the algorithm toward the Region of 
Interest of the Pareto optimal front. Assume that every 
individual ip in the population has three attributes:

1. Non domination rank ( ranki ),
2. Crowding distance ( crowding

distancei ),
3. FAP to distance ( FAP

distancei ).
We define a partial order n as:

i n jp p if ( ranki is less to rankj ) or (( ranki is equal 
to rankj ) and ( FAP

distancei is less to FAP
distancej )) or (( ranki is 

equal to rankj ) and ( FAP
distancei is equal to FAP

distancej ) and 
( crowding

distancei ) is greater to ( crowding
distancej )),

where n is the number of non-domination ranks.
Between two solutions with different non-

domination ranks, we prefer the solution with the lower 
(better) rank. Otherwise, if both solutions belong to the 
same front, then we prefer the solution that is closest to 
the FAP or is located in a less crowded region and is 
equal to the FAP.

The ROI of the Pareto front for the DM is reached 
using the FAP comparison procedure, which is used in 
tournament selection and during the population 
reduction phase.

4. Empirical Evaluation

The aim of this empirical evaluation is to analyze how 
the RP2-NSGA-II performs when solving ranking 
problems with different structures and sizes. We attempt 
to capture essential MOEA characteristics and analyze 
any interesting observations resulting from the 
experiment execution and result analysis. To achieve 
this goal, a set of simulated fuzzy outranking relations
were randomly generated in such a way that for a given 

value , there is a partial order (i.e., a reflexive, 
antisymmetric and transitive preference relation) of 

classes of alternatives without inconsistencies, that is, 
the objective functions ( )kP Af and ( )kP Ag are equal to 
zero. Thus, RP2-NSGA-II was executed to exploit each
of the generated fuzzy outranking relations and was 
evaluated with respect to whether it was successful in
finding the best solution.

In addition, we exploited the simulated instances 
problems with other evolutionary approaches with the 
aim to have a comparison point to analyse the 
performance of the RP2-NSGA-II and to discuss its 
advantages (or disadvantages). The first approach is a 
ranking procedure based on the MOGA-H15; as the RP2-
NSGA-II is an extended version of it, a second approach 
is the use of the original NSGA-II with random 
initialization and using the original crowded comparison
operator; a third approach is the R-NSGA-II31, which 
uses one, or several, reference points to guide the search 
to a specific region(s) of the Pareto’s front. This allowed
us to compare the quality of the solution with the RP2-
NSGA-II with other approaches in the literature.

4.1. Generating the Simulated Fuzzy Outranking 
Relations

The construction of the set of simulated fuzzy
outranking relations was performed using an instances 
generator developed in the C programming language. 
Algorithm 1 shows the general procedure to simulate 
each of the fuzzy outranking relations. The fuzzy
outranking relations were generated based on a 
previously simulated ranking with different sizes and 
structures of a medium-sized set of alternatives with the 
indication that the rankings were consistent with the 
fuzzy outranking relation, i.e., each simulated instance 
of the ranking problem is a fuzzy outranking relation 
constructed in such a way that, for a given interval of 
lambda values, ´( ´ , 0.5 and

10 ), there is a partial or complete order of 
classes of alternatives without inconsistencies 
(Appendix A presents a general outline of this 
algorithm.).

This evaluation was performed on a combination of 
different numbers of alternatives and different numbers 
of classes. Table 1 shows the values for the input 
parameters of Algorithm 1 used to generate the 
simulated fuzzy outranking relations for this study (F1: 
number of alternatives and F2: number of classes). For 
each combination of the two defined factors with their 
respective levels (4 levels in F1 and 5 levels in F2, 20 
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combinations in total), 100 fuzzy outranking relations 
were generated to obtain  2,000 in all.

Algorithm 1. Instances generator algorithm

Input: Number of classes of alternatives CN and number 

of alternatives AN .

Output: Fuzzy Outranking Relation AS .

1. Randomly compute a partially ordered set O of 

size C CN N (i.e., Reflexive, Transitive and 

Antisymmetric preference relations).

2. Create a vector V of alternatives of size AN and 

randomly assign a class to each alternative.

3. Randomly generate a 

0.60 0.75cut cut .

4. Fill AS according with V and cut .

Table 1. Factors considered in the empirical study.

Factors Levels

F1: Number of alternatives 15, 30, 45, 60 

F2: Number of classes 3, 5, 7, 9, 11

4.2. Response Variable

The response variable defined to analyze RP2-NSGA-II 
is the number of solutions that it finds per combination 

1 2( , )F F . Each combination 1 2( , )F F has 100 different 
fuzzy outranking relations. For each run i of RP2-
NSGA-II on a single fuzzy outranking relation, we 
define an auxiliary binary variable 1 2,( )ix F F which
takes a value of one if the algorithm finds the best 
solution or zero otherwise. Therefore, the response 
variable 100

1 2 1 21
( , ) ( , )ii

X F F x F F is the sum of all the 
100 auxiliary binary variables per combination 1 2( , )F F .

4.3. Results

The stochastic nature of the evolutionary algorithms 
could lead to a good (or bad) result due to chance. To 
minimize this error and to obtain results with statistical 
significance, we exploited all 100 fuzzy outranking 
relations per combination 1 2( , )F F with each of the 
evolutionary approaches (RP2-NSGA-II, MOGA-H,

NSGA-II, R-NSGA-II) ten times using the parameter
values shown in Table 2.

Table 2. Parameters for the MOEAs

RP2-
NSGA-II R-NSGA-II NSGA-II MOGA-H

# of generations 1000
Population size 40 50
Crossover probability 0.9 1
Mutation probability 0.005
Lambda range values [0.60, 0.85]
Note: For the R-NSGA-II, We set the reference point to (0,0) and the 

reference point to 0.0001.

4.3.1. RP2-NSGA-II Study

In this section, we evaluated and describe the 
performance of the RP2-NSGA-II on the simulated 
problems.

Table 3 shows some descriptive statistics for the 
results of the evaluation for the ten runs of each set of 
combinations 1 2( , )F F . Figure 2 depicts boxplots for the 
number of solutions found in the ten repetitions for each 
set of combinations.

Table 3. Mean, standard deviation (StDev), min value (Min), 
median (Med) and max value (Max) for the ten runs of the sets 
of combinations F1 and F2. Descriptive statistics for the ten 
runs of each number of classes (Class)-alternatives (Alts)
combinations.

Class Alts. Mean StDev Min Med Max

3

15 99.9 0.3 99.0 100.0 100.0
30 100.0 0.0 100.0 100.0 100.0
45 100.0 0.0 100.0 100.0 100.0
60 83.5 19.7 32.0 89.5 98.0

5

15 99.9 0.3 99.0 100.0 100.0
30 100.0 0.0 100.0 100.0 100.0
45 100.0 0.0 100.0 100.0 100.0
60 73.1 24.2 23.0 81.0 97.0

7

15 100.0 0.0 100.0 100.0 100.0
30 100.0 0.0 100.0 100.0 100.0
45 100.0 0.0 100.0 100.0 100.0
60 68.4 24.9 19.0 78.0 94.0

9

15 99.9 0.3 99.0 100.0 100.0
30 100.0 0.0 100.0 100.0 100.0
45 100.0 0.0 100.0 100.0 100.0
60 70.3 29.0 13.0 81.0 95.0

11

15 100.0 0.0 100.0 100.0 100.0
30 100.0 0.0 100.0 100.0 100.0
45 100.0 0.0 100.0 100.0 100.0
60 71.3 27.7 17.0 83.0 97.0
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Fig. 2. Boxplots for the total of best solutions found in the ten
runs for each set of F1 and F2 combinations (asterisks in this 
graph represent outliers in the results).

Figure 2 shows that RP2-NSGA-II had excellent 
results for all class sizes with 15, 30 and 45 alternatives. 
In all of these sets, RP2-NSGA-II found all of the 
solutions in each of the ten runs (for the sets of 15 
alternatives and 3, 5 and 9 classes, we can see outliers 
resulting in a mean of 99.9; in one of the ten runs for 
these cases, RP2-NSGA-II found 99 solutions). For the 
case of 60 alternatives (all classes’ size), the results 
were not as good. For this particular case, RP2-NSGA-II 
shows a mean number of solutions of 83.5, 73.1, 68.4, 
70.3 and 71.3 for 3, 5, 7, 9, and 11 classes, respectively.

The size of the classes does not affect the 
performance of RP2-NSGA-II, but the number of 
alternatives does to affect the performance.

To test the statistical significance of this hypothesis, 
we compare across the groups of classes and across the 
groups of alternatives using the Kruskal-Wallis H-Test 

the 
following hypothesis for different numbers of classes: 

H0: The distributions of the results are equal across 
all groups of class size.
H : At least one of the distributions of the results 
differs.

The hypothesis to test for different numbers of 
alternatives is: 

H0: The distributions of the results are equal across 
all groups of numbers of alternatives.
H : At least one of the distributions of the results 
differs.

Tables 3 and 4 show the results for the Kruskal-Wallis 
H-Test for both comparisons. 

Table 3. Kruskal-Wallis Test for the number of best-known 
solutions found in ten runs for the sets of 3, 5, 7, 9 and 11 
classes.

Classes N Median Av. Rank

3 40 100 102.1

5 40 100 99.5

7 40 100 100.1

9 40 100 99.2

11 40 100 101.6

Overall 200 100.5

H = 0.08  DF = 4  P = 0.999

H = 0.13  DF = 4  P = 0.998 (adjusted for ties)

Table 4. Kruskal-Wallis Test for the number of best-known 
solutions found in ten runs for the sets of 15, 30, 45 and 60 
alternatives.

Alternatives N Median Av. Rank

15 50 100 122.5

30 50 100 127

45 50 100 127

60 50 82 25.5

Overall 200 100.5

H = 112.14  DF = 3  P = 0.000

H = 186.00  DF = 3  P = 0.000 (adjusted for ties)

For the case of the groups of classes, the Kruskal-
Wallis H-Test shows that there is no statistically 
significant difference (p-value > 0.05) in the results 
across different numbers of classes. This result suggests 
that there is sufficient evidence to conclude that the size 
of the classes does not affect the performance of the 
MOEA. For the case of the groups with different 
numbers of alternatives, the Kruskal-Wallis H-Test 
shows that there is a statistically significant difference 
(p-value < 0.05) in the results for at least one of the 
groups; thus, we reject the null hypothesis that the 
number of alternatives does not affect the performance 
of the MOEA. Figure 1 shows that the group of 
alternatives that differs is the one with 60 alternatives. 
Hence, we did not consider a post-hoc pairing analysis 
to determine which of the groups made the difference.
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MOEAs Comparison Study

For each test problem, the four rankings derived by 
using the four ranking procedures were analyzed with 
the following method. The method (denoted as “Rate 
1”, “Rate 2”, “Rate 3” and “Rate 4” in Table 5) aimed to 
record the number of times each of the four rankings,
derived from RP2-NSGA-II, R-NSGA-II, NSGA-II and 
MOGA-H, respectively, were different from the 
reference ranking (error rate). That is, when two 
rankings are compared, this rate would be equal to zero 
if the two rankings are identical, otherwise it would be
equal to one (i.e., it is binary valued). For instance, in 
Table 5, when the RP2-NSGA-II method is used with 60
alternatives and three classes, "Rate 1" is equal to 16.5,
which means that 16.5% of the simulated problems with 
60 alternatives and three classes were different from the 
reference ranking when using such method. The error 
rates obtained using the reference sets provide an 
estimation of the generalized performance of the 
methods measuring their ability to provide correct 
recommendations on the ranking of alternatives.

The results in Table 5, show that the RP2-NSGA-II 
has lower error rates than the rest of the methods in all 
cases, except for the MOGA-H, which shows better 
results in the cases for 60 alternatives with any number 
of classes.

To test if the difference in the results for the ranking 
procedures is statistically significant and thus to 
determine if the RP2-NSGA-II ranking procedure has 
the best performance, a Wilcoxon signed-rank test with 
a significant level of 0.05 was used. Note that this 
test discarted the R-NSGA-II and NSGA-II procedures 
due their low performance and only focused on 
comparing the MOGA-H and the RP2-NSGA-II 
procedures, which showed positive results. In Table 5
the statistically best performer method, in each 
combination 1 2( , )F F , is highlighted in bold face. 
In general, the results of this statistical test show that 
RP2-NSGA-II has better performance than the MOGA-
H in the majority of the reference sets. Given these 
results, the RP2-NSGA-II procedure can be considered 
the most efficient ranking method for deriving a ranking 
from a medium-sized valued outranking relation in 
cases where the assumptions for these techniques are 
met in the data under consideration.

In addition to this experiment, we exploited a 
sampling of the set of outranking relations with the 
distillation ranking procedure of ELECTRE III14. For 

the sampling, we randomly selected 9 outranking 
relations from each combination 1 2( , )F F . In total, we 
had a sampling of 180 fuzzy outranking relations. For 
this test, from the 180 fuzzy outranking relations, the 
distillation ranking procedure generated only one 
ranking without inconsistencies, corresponding to a 
ranking with 3 classes, 30 alternatives and 0.72 .

Table 5. Error rates for the four ranking procedures for 
different alternatives and classes.

ClassesAlternatives Rate 1 Rate 2 Rate 3 Rate 4

3

15 0.1 97.6 100 0
30 0 94.9 100 0
45 0 99.1 100 0
60 16.5 100 100 0.3

5

15 0.1 100 100 2.4
30 0 100 100 0.5
45 0 100 100 0.5
60 26.9 100 100 0.9

7

15 0 100 100 58
30 0 100 100 5.2
45 0 100 100 2.1
60 31.6 100 100 4.4

9

15 0.1 100 100 99.7
30 0 100 100 33.8
45 0 100 100 8.3
60 29.7 100 100 12

11

15 0 100 100 100
30 0 100 100 74.1
45 0 100 100 29.4
60 28.7 100 100 20.5

5. Real Case Example

In this section, we present the application of RP2-
NSGA-II to a real problem: ranking the municipalities 
of the State of Guanajuato, Mexico by their 
marginalization level. Marginalization is a problem that 
occurs in different regions of Mexico and is one of the 
causes of the socio-economic inequality in the country. 
Related social, economic and demographic indicators 
have forced the Mexican government to endorse the 
commitment to fight conditions that disadvantage 
certain population groups and certain regions of the 
country. In this example, the problem is addressed as a 
multi-criteria ranking problem using as evaluation 
criteria the socio-demographic indicators constructed by 
the Mexican National Population Council (CONAPO). 
From the ranking of the municipalities that we obtained 
with RP2-NSGA-II, we made a comparison with the 
ordered stratifications created by Ref. 34 to analyze the 
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consistency of our results. Finally, we also obtained a 
set of rankings with the R-NSGA-II to make a 
comparative analysis with the solutions obtained with 
the RP2-NSGA-II.

5.1. Data Source

The data used in this study are part of the socio-
demographic indicators constructed by CONAPO based 
on data obtained from the 2010 Census of Population 
and Housing for the 2010 marginalization index. The
indicators from the CONAPO study (shown in Table 6)
are used as evaluation criteria to model the 
marginalization level of the 46 municipalities of the 
State of Guanajuato (Table 7 lists these municipalities). 
Due to lack of space, the performance of the 
municipalities in each indicator (performance matrix) is 
omitted in this paper but can be found in Ref. 34.

5.2. Computations with the ELECTRE III- RP2-
NSGA-II Methodology

As a first step, the fuzzy outranking relation was 
computed with the performance of the municipalities in 
each criterion using the ELECTRE-III aggregation 
procedure. The weights for the criteria were taken from 
the CONAPO study. For the Indifferent and Preference 
thresholds, we made an analysis to determine their 
values. We did not consider a Veto threshold, and the 
preference direction of the criteria was to minimize. 
Table 8 shows the values for these parameters. 

Table 6. Indicator created by CONAPO and used as evaluation 
criteria.

Label Criterion

g1 % Illiterate Population 15 years and older. 

g2
% Population with incomplete elementary school 

education, 15 years and older 

g3 % Occupants in dwellings without sanitation 

g4 % Occupants in dwellings without electricity 

g5 % Occupants in dwellings without running water 

g6 % Overcrowded dwellings 

g7 % Occupants in dwellings with only dirt floor 

g8
% Population in localities with less than 5,000 

inhabitants 

g9
% People employed with income less than double 

minimum wage 

Table 7. The 46 municipalities of the State of Guanajuato, 
México.

ID Municipality ID Municipality

1 Abasolo 24 Pueblo Nuevo

2 Acámbaro 25 Purísima del Rincón

3 San Miguel de Allende 26 Romita

4 Apaseo el Alto 27 Salamanca

5 Apaseo el Grande 28 Salvatierra

6 Atarjea 29 San Diego de la Unión

7 Celaya 30 San Felipe

8 Manuel Doblado 31 San Francisco del Rincón

9 Comonfort 32 San José Iturbide

10 Coroneo 33 San Luis de la Paz

11 Cortazar 34 Santa Catarina

12 Cuerámaro 35

Santa Cruz de Juventino 

Rosas

13 Doctor Mora 36 Santiago Maravatío

14 Dolores Hidalgo 37 Silao

15 Guanajuato 38 Tarandacuao

16 Huanímaro 39 Tarimoro

17 Irapuato 40 Tierra Blanca

18 Jaral del Progreso 41 Uriangato

19 Jerécuaro 42 Valle de Santiago

20 León 43 Victoria

21 Moroleón 44 Villagrán

22 Ocampo 45 Xichú

23 Pénjamo 46 Yuriria

Table 8. Values for the Weights (W) and the Indifference (q)
and Preference (p) Thresholds.

Criterion Weight (W) Indifference (q) Preference (p)

g1 0.140 2.00 4.00

g2 0.141 4.00 7.00

g3 0.073 2.00 4.00

g4 0.092 0.80 2.50

g5 0.092 2.00 4.00

g6 0.115 4.00 7.00

g7 0.108 2.50 5.00

g8 0.102 10.00 20.00

g9 0.137 7.50 12.50

After the fuzzy outranking relation was computed,
we proceeded to exploit it with RP2-NSGA-II to find the 
closest partial order of classes to this model of 
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preferences. Due to the stochastic nature of the 
evolutionary algorithms, the solutions found from 
different runs of the algorithm can vary in quality.
Therefore, with the aim to find the best possible 
solution(s), we performed RP2-NSGA-II ten times with 
a number of generations of 1,000, a population size of 
40, a crossover probability of 0.9, a mutation probability 
of 0.005 and a lambda value ranging from 0.60 ~ 0.69.
Then, we compared all of the solutions in the restricted 
Pareto front found by the algorithm in each of the runs 
to select the one with the lowest number of 
inconsistencies (sum of ( )kP Af and ( )kP Ag objective 
values). In Table 9, we present the top five solutions 
with the lowest number of inconsistencies in this 
comparison. We selected solution 1, which had 137 
inconsistencies and 7 classes, for the corresponding 
analysis.

Table 9. Objective values, overall inconsistencies 
( ( ) ( )k kP A P Af g ), and number of classes (#Classes) of the top 
five solutions with the lowest numbers of inconsistencies 
found by RP2-NSGA-II in the ten runs.

Solution ( )kP Af ( )kP Ag ( ) ( )k kP A P Af g #Classes
1 0.69 68 68 136 7
2 0.69 79 62 141 7
3 0.68 66 75 141 7
4 0.68 77 68 145 7
5 0.67 70 78 148 7

5.3. Analysis of the Results

As a result of this analysis, the selected solution has an 
inconsistency rate of 13.23% with respect to the crisp 
outranking relation .69

AS , with a value of 0.69. To 
analyze the quality of the results of RP2-NSGA-II, we 
take as a reference point the ordered categories
(stratifications) made by CONAPO (2011) for the 46 
municipalities of the State of Guanajuato, México. 
Because CONAPO proved and validated its results, we 
believe this is a trustworthy comparison to determine if 
RP2-NSGA-II can construct a coherent ranking of the 
municipalities with the same data used by CONAPO.
Figure 3 shows both rankings, including the coherence 
between rankings. In the ranking of RP2-NSGA-II, the 
first class, C1, groups all the municipalities from the 
“Very Low” and “Low” classifications from the 
CONAPO ranking, except for municipalities 2 and 18. 
The C2 class of RP2-NSGA-II only has municipality 18, 
which is in the “Low” classification of the CONAPO 
rankings. The municipalities in classes C3, C4, C5 and 

C6 of RP2-NSGA-II are in concordance with the 
“Medium” stratification of CONAPO. The
municipalities in class C7 agree with the last two 
stratifications of “High” and “Very High” of the 
CONAPO ranking.

Additionally, in this analysis, the consistency of the 
ranking of CONAPO was evaluated using the objective 
functions defined in RP2-NSGA-II, considering the 
same outranking relation, with a lambda cut of 0.69 to 
evaluate the solution of the MOEA. From this 
evaluation, we obtained the values of ( )kP Af =240 and 

( )kP Ag =48, representing a total of 288 inconsistencies 
with respect to .69

AS . The results of this evaluation 
suggest that the ranking structure of the seven classes 
from the RP2-NSGA-II represents a more consistent 
solution than the five ordered classes of the CONAPO 
study.

Fig. 3. Classes of the MOEA RP2-NSGA-II (left) and 
stratifications created by CONAPO in ascending order of 
marginalization level. “C + number in subscript” identifies 
each class and each stratification has a label that indicates its 
marginalization level. Within brackets are the labels of the 
municipalities that belong to each class of stratification. 
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5.4. Comparison against R-NSGA-II algorithm

In this section, we illustrate the distribution of the 
solutions of the RP2-NSGA-II, in the objective space,
for the ranking of the municipalities of the State of 
Guanajuato, Mexico. We also, show the distributions for 
the R-NSGA-II results to make a comparison of both 
algorithms when looking to those solutions near the
ROI.

For this comparison, we exploited the valued 
outranking relation obtained for the municipalities of 
the state of Guanajuato, México, ten times with the R-
NSGA-II, using the same parameters used for the RP2-
NSGA-II (number of generations of 1,000, a population 
size of 40, a crossover probability of 0.9, a mutation 
probability of 0.005 and a lambda value ranging from 
0.60 ~ 0.69) and an value of 0.0001. Then, from the 
set of non dominated solutions obtained in each of the 
ten executions, we obtained a final set of non dominated 
solutions to make the comparison with the results 
obtained with the RP2-NSGA-II. Figure 4 shows a 
general view, over the three objectives functions, of the 
non dominated solutions found with both methods. In 
this figure we can observe that most of the solutions, for 
both methods, were found with a lambda value of 0.69. 
In Fig. 5, we show a projection for two objective 

functions ( ( )kP Af and ( )kP Ag ) for the value of 0.69. 
In this projection we can see that the set of non 
dominated solutions of the RP2-NSGA-II dominates the 
set of non dominated solutions of the R-NSGA-II; we  
can also observe that the non dominated set of the RP2-
NSGA-II has solutions closer to the ROI than the R-
NSGA-II.

Table 10 shows the ten solutions in each non 
dominated set (R-NSGA-II  and RP2-NSGA-II) showed 
in Fig. 5 with the lowest distance to the ROI. This 
distance is the Normalized Euclidean Distance (NED) 
used in Ref. 31 to measure the distance of one solution 
to the reference point. The NED was calculated using 
the following equation:

2

max min1

( )M i i
ii

i i

f x z
NED w

f f
(27)

where M is the number of objective functions; iw is the 
relative weight of the i-th objective function; max

if and 
min

if are the population maximum and minimum values 
of the i-th objective function; and iz is the reference 
point to the ROI of the i-th objective function. We 
should note, that we only use the ( )kP Af and ( )kP Ag
objectives function to calculate the NED.

Fig 4. General view, over the three objectives functions, of the non dominated solutions found with the RP2-NSGA-II and the R-
NSGA-II. The Pareto Fronts for each value were obtained by executing the RP2-NSGA-II several times using the Crowding 
Comparison Operator in order to obtain a spread set of non dominated solutions in each lambda value. These Pareto Fronts are used 
only to have a reference of points (solutions) in the 3D space.
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Fig. 5. projection for two objective functions ( ( )kP Af and ( )kP Ag ) for the value of 0.69.

Table 10. The ten closest solutions to the ROI in each non 
dominated set (R-NSGA-II  and RP2-NSGA-II) showed in Fig. 
5.

R-NSGA-II RP2-NSGA-II

( )kP Af ( )kP Ag NED ( )kP Af ( )kP Ag NED
52 94 2.1785 55 78 1.0235
50 98 2.1908 57 76 1.0243
54 92 2.1936 58 75 1.0251
49 100 2.1983 60 73 1.0274
44 107 2.2067 54 80 1.0312
45 106 2.2093 53 81 1.0314
38 116 2.2460 52 82 1.0319
37 119 2.2772 50 84 1.0337
36 120 2.2792 42 91 1.0412
33 130 2.3966 49 86 1.0431

6. Conclusions

This paper addressed the problem of multi-criteria 
ranking with a medium-sized set of alternatives. We 
formulated this problem as a multi-objective 
combinatorial optimization problem and proposed the
RP2-NSGA-II procedure to solve it. The main objective
in this paper was to propose an improved version of the 

MOEA presented in Ref. 15 that is capable of directly 
exploring a search space of partial orders of classes of 
alternatives instead of a search space of anti-symmetric 
crisp outranking relations from a medium-sized set of 
alternatives.

We proposed a representation of an individual for 
the evolutionary algorithm that can be decoded to form 
a partial order of classes of alternatives and studied the 
proposed RP2-NSGA-II by simulating several ranking 
problems with different sized sets and class structures.

The proposed RP2-NSGA-II is compared with the 
MOGA-H, NSGA-II, and R-NSGA-II algorithms on a 
set of simulated medium-sized ranking problems. The 
experiment results demonstrate that the proposed 
ranking procedure achieves good performances on the 
simulated ranking problems, and importantly 
outperforms the compared algorithms on finding the 
reference solutions. Based on the results from the 
empirical evaluation, we consider that this approach can 
be effectively used to exploit fuzzy outranking relations, 
with up to 60 alternatives to derive a ranking, which is 
highly consistent with the DM’s model of preferences.

In addition, the real case study we presented shows 
that we can apply the method with good results to 
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problems where it is desirable to rank a medium-sized 
set of alternatives evaluated by multiple criteria under 
the outranking approach.
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